Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Giant Leap to Commercialization of Polymer Solar Cell (PSC)

07.05.2013
Researchers from Ulsan National Institute of Science and Technology (UNIST) demonstrated high-performance polymer solar cells (PSCs) with power conversion efficiency (PCE) of 8.92% which is the highest values reported to date for plasmonic PSCs using metal nanoparticles (NPs).
A polymer solar cell is a type of thin film solar cells made with polymers that produce electricity from sunlight by the photovoltaic effect. Most current commercial solar cells are made from a highly purified silicon crystal. The high cost of these silicon solar cells and their complex production process has generated interest in developing alternative photovoltaic technologies.

Compared to silicon-based devices, PSCs are lightweight (which is important for small autonomous sensors), solution processability (potentially disposable), inexpensive to fabricate (sometimes using printed electronics), flexible, and customizable on the molecular level, and they have lower potential for negative environmental impact. Polymer solar cells have attracted a lot of interest due to these many advantages.

Although these many advantages, PSCs currently suffer from a lack of enough efficiency for large scale applications and stability problems but their promise of extremely cheap production and eventually high efficiency values has led them to be one of the most popular fields in solar cell research.

To maximize PCE, light absorption in the active layer has to be increased using thick bulk heterojunction (BHJ) films. However, the thickness of the active layer is limited by the low carrier mobilities of BHJ materials. Therefore, it is necessary to find the ways to minimize the thickness of BHJ films while maximizing the light absorption capability in the active layer.

The research team employed the surface plasmon resonance (SPR) effect via multi-positional silica-coated silver NPs (Ag@SiO2) to increase light absorption. The silica shell in Ag@SiO2 preserves the SPR effect of the Ag NPs by preventing oxidation of the Ag core under ambient conditions and also eliminates the concern about exciton quenching by avoiding direct contact between Ag cores and the active layer. The multi-positional property refers to the ability of Ag@SiO2 NPs to be introduced at both ITO/PEDOT:PSS (type I) and PEDOT:PSS/active layer (type II) interfaces in polymer: fullerene-based BHJ PSCs due to the silica shells.
Because PSCs have many advantages, including low cost, solution processability, and mechanical flexibility, PSCs can be adopted in various applications. However, we should break the efficiency barrier of 10% for commercialization of PSCs.

Jin Young Kim and Soojin Park, both, Associate Professors of the Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea, led this work.

Prof. Kim said, “This is the first report introducing metal NPs between the hole transport layer and active layer for enhancing device performance. The multipositional and solutions-processable properties of our surface plasmon resonance (SPR) materials offer the possibility to use multiple plasmonic effects by introducing various metal nanoparticles into different spatial location for high-performance optoelectronic device via mass production techniques.”
“Our work is meaningful to develop novel metal nanoparticles and almost reach 10% efficiency by using these materials. If we continuously focus on optimizing this work, commercialization of PSCs will be a realization but not dream,” added Prof. Park.

This research was supported by WCU (World Class University) program through the Korea Science and Engineering Foundation funded the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) and the National Research Foundation of Korea (President Seung Jong Lee). It has published in Nano Letters (Title: Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells ).

Ulsan National Institute of Science and Technology http://www.unist.ac.kr
Home Page of Prof. Jin Young kim
http://ngel.unist.ac.kr/
Homepage of Prof. Soojin Park
http://spark.unist.ac.kr
The original research article is available at http://pubs.acs.org/doi/abs/10.1021/nl400730z
Journal information
Nano Letters
Funding information
WCU (World Class University) program through the Korea Science and Engineering Foundation funded the Ministry of Education, Science and Technology and the National Research Foundation of Korea.

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>