Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new dimension for solar energy

27.03.2012
Intensive research around the world has focused on improving the performance of solar photovoltaic cells and bringing down their cost.

But very little attention has been paid to the best ways of arranging those cells, which are typically placed flat on a rooftop or other surface, or sometimes attached to motorized structures that keep the cells pointed toward the sun as it crosses the sky.

Now, a team of MIT researchers has come up with a very different approach: building cubes or towers that extend the solar cells upward in three-dimensional configurations. Amazingly, the results from the structures they've tested show power output ranging from double to more than 20 times that of fixed flat panels with the same base area.

The biggest boosts in power were seen in the situations where improvements are most needed: in locations far from the equator, in winter months and on cloudier days. The new findings, based on both computer modeling and outdoor testing of real modules, have been published in the journal Energy and Environmental Science.

"I think this concept could become an important part of the future of photovoltaics," says the paper's senior author, Jeffrey Grossman, the Carl Richard Soderberg Career Development Associate Professor of Power Engineering at MIT.

The MIT team initially used a computer algorithm to explore an enormous variety of possible configurations, and developed analytic software that can test any given configuration under a whole range of latitudes, seasons and weather. Then, to confirm their model's predictions, they built and tested three different arrangements of solar cells on the roof of an MIT laboratory building for several weeks.

While the cost of a given amount of energy generated by such 3-D modules exceeds that of ordinary flat panels, the expense is partially balanced by a much higher energy output for a given footprint, as well as much more uniform power output over the course of a day, over the seasons of the year, and in the face of blockage from clouds or shadows. These improvements make power output more predictable and uniform, which could make integration with the power grid easier than with conventional systems, the authors say.

The basic physical reason for the improvement in power output — and for the more uniform output over time — is that the 3-D structures' vertical surfaces can collect much more sunlight during mornings, evenings and winters, when the sun is closer to the horizon, says co-author Marco Bernardi, a graduate student in MIT's Department of Materials Science and Engineering (DMSE).

The time is ripe for such an innovation, Grossman adds, because solar cells have become less expensive than accompanying support structures, wiring and installation. As the cost of the cells themselves continues to decline more quickly than these other costs, they say, the advantages of 3-D systems will grow accordingly.

"Even 10 years ago, this idea wouldn't have been economically justified because the modules cost so much," Grossman says. But now, he adds, "the cost for silicon cells is a fraction of the total cost, a trend that will continue downward in the near future." Currently, up to 65 percent of the cost of photovoltaic (PV) energy is associated with installation, permission for use of land and other components besides the cells themselves.

Although computer modeling by Grossman and his colleagues showed that the biggest advantage would come from complex shapes — such as a cube where each face is dimpled inward — these would be difficult to manufacture, says co-author Nicola Ferralis, a research scientist in DMSE. The algorithms can also be used to optimize and simplify shapes with little loss of energy. It turns out the difference in power output between such optimized shapes and a simpler cube is only about 10 to 15 percent — a difference that is dwarfed by the greatly improved performance of 3-D shapes in general, he says. The team analyzed both simpler cubic and more complex accordion-like shapes in their rooftop experimental tests.

At first, the researchers were distressed when almost two weeks went by without a clear, sunny day for their tests. But then, looking at the data, they realized they had learned important lessons from the cloudy days, which showed a huge improvement in power output over conventional flat panels.

For an accordion-like tower — the tallest structure the team tested — the idea was to simulate a tower that "you could ship flat, and then could unfold at the site," Grossman says. Such a tower could be installed in a parking lot to provide a charging station for electric vehicles, he says.

So far, the team has modeled individual 3-D modules. A next step is to study a collection of such towers, accounting for the shadows that one tower would cast on others at different times of day. In general, 3-D shapes could have a big advantage in any location where space is limited, such as flat-rooftop installations or in urban environments, they say. Such shapes could also be used in larger-scale applications, such as solar farms, once shading effects between towers are carefully minimized.

A few other efforts — including even a middle-school science-fair project last year — have attempted 3-D arrangements of solar cells. But, Grossman says, "our study is different in nature, since it is the first to approach the problem with a systematic and predictive analysis."

Written by: David L. Chandler, MIT News Office

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>