Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cheaper drive to 'cool' fuels

24.06.2013
UD scientists pioneer inexpensive catalyst to drive synthetic fuel production
University of Delaware chemist Joel Rosenthal is driven to succeed in the renewable energy arena.

Working in his lab in UD’s Department of Chemistry and Biochemistry, Rosenthal and doctoral student John DiMeglio have developed an inexpensive catalyst that uses the electricity generated from solar energy to convert carbon dioxide, a major greenhouse gas, into synthetic fuels for powering cars, homes and businesses.
The research is published in the June 19 issue of the Journal of the American Chemical Society.

Gold and silver represent the “gold standard” in the world of electrocatalysts for conversion of carbon dioxide to carbon monoxide. But Rosenthal and his research team have pioneered the development of a much cheaper alternative to these pricey, precious metals. It’s bismuth, a silvery metal with a pink hue that’s a key ingredient in Pepto-Bismol, the famous pink elixir for settling an upset stomach.

An ounce of bismuth is 50 to 100 times cheaper than an ounce of silver, and 2,000 times cheaper than an ounce of gold, Rosenthal says. Bismuth is more plentiful than gold and silver, it is well distributed globally and is a byproduct in the refining of lead, tin and copper.

Moreover, Rosenthal says his UD-patented catalyst offers other important advantages: selectivity and efficiency in converting carbon dioxide to fuel.

“Most catalysts do not selectively make one compound when combined with carbon dioxide — they make a whole slew,” Rosenthal explains. “Our goal was to develop a catalyst that was extremely selective in producing carbon monoxide and to power the reaction using solar energy.”

Many of us hear ‘”carbon monoxide” and think “poison.”

“It’s true that you do not want to be in a closed room with carbon monoxide,” Rosenthal says. “But carbon monoxide is very valuable as a commodity chemical because it’s extremely energy rich and has many uses.”

Carbon monoxide is used industrially in the water-gas shift reaction to make hydrogen gas. It also is a prime feedstock for the Fischer-Tropsch process, which allows for the production of synthetic petroleum, gasoline and diesel.

Commercial production of synthetic petroleum is under way or in development in a number of countries, including Australia and New Zealand, China and Japan, South Africa and Qatar.

Rosenthal says that if carbon dioxide emissions become taxed in the future due to continuing concerns about global warming, his solar-driven catalyst for making synthetic fuel will compete even better economically with fossil fuels.

“This catalyst is a critically important linchpin,” Rosenthal says. “Using solar energy to drive the production of liquid fuels such as gasoline from CO2 is one of the holy grails in renewable energy research. In order to do this on a practical scale, inexpensive catalysts that can convert carbon dioxide to energy-rich compounds are needed. Our discovery is important in this regard, and demonstrates that development of new catalysts and materials can solve this problem. Chemists have a big role to play in this area.”

Rosenthal credits a scientific article published during America’s first energy crisis in the 1970s for piquing his interest in bismuth. At that time, many researchers were examining the conversion of carbon dioxide to carbon monoxide using electricity and metal electrodes. The research went bust in the early 1980s when federal funding dried up. Rosenthal picked up the trail and blazed a new one.

“With this advance, there are at least a dozen things we need to follow up on,” Rosenthal notes. “One successful study usually leads to more questions and possibilities, not final answers.”

Rosenthal’s lab will be operating at full tilt this summer, exploring some of those questions. And his research team of seven will have some company. Through the American Chemical Society’s Project SEED summer research program, budding scientists from nearby Newark High School will join Rosenthal’s team for further study of this bismuth-based catalyst.

Article by Tracey Bryant

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>