Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cheaper drive to 'cool' fuels

24.06.2013
UD scientists pioneer inexpensive catalyst to drive synthetic fuel production
University of Delaware chemist Joel Rosenthal is driven to succeed in the renewable energy arena.

Working in his lab in UD’s Department of Chemistry and Biochemistry, Rosenthal and doctoral student John DiMeglio have developed an inexpensive catalyst that uses the electricity generated from solar energy to convert carbon dioxide, a major greenhouse gas, into synthetic fuels for powering cars, homes and businesses.
The research is published in the June 19 issue of the Journal of the American Chemical Society.

Gold and silver represent the “gold standard” in the world of electrocatalysts for conversion of carbon dioxide to carbon monoxide. But Rosenthal and his research team have pioneered the development of a much cheaper alternative to these pricey, precious metals. It’s bismuth, a silvery metal with a pink hue that’s a key ingredient in Pepto-Bismol, the famous pink elixir for settling an upset stomach.

An ounce of bismuth is 50 to 100 times cheaper than an ounce of silver, and 2,000 times cheaper than an ounce of gold, Rosenthal says. Bismuth is more plentiful than gold and silver, it is well distributed globally and is a byproduct in the refining of lead, tin and copper.

Moreover, Rosenthal says his UD-patented catalyst offers other important advantages: selectivity and efficiency in converting carbon dioxide to fuel.

“Most catalysts do not selectively make one compound when combined with carbon dioxide — they make a whole slew,” Rosenthal explains. “Our goal was to develop a catalyst that was extremely selective in producing carbon monoxide and to power the reaction using solar energy.”

Many of us hear ‘”carbon monoxide” and think “poison.”

“It’s true that you do not want to be in a closed room with carbon monoxide,” Rosenthal says. “But carbon monoxide is very valuable as a commodity chemical because it’s extremely energy rich and has many uses.”

Carbon monoxide is used industrially in the water-gas shift reaction to make hydrogen gas. It also is a prime feedstock for the Fischer-Tropsch process, which allows for the production of synthetic petroleum, gasoline and diesel.

Commercial production of synthetic petroleum is under way or in development in a number of countries, including Australia and New Zealand, China and Japan, South Africa and Qatar.

Rosenthal says that if carbon dioxide emissions become taxed in the future due to continuing concerns about global warming, his solar-driven catalyst for making synthetic fuel will compete even better economically with fossil fuels.

“This catalyst is a critically important linchpin,” Rosenthal says. “Using solar energy to drive the production of liquid fuels such as gasoline from CO2 is one of the holy grails in renewable energy research. In order to do this on a practical scale, inexpensive catalysts that can convert carbon dioxide to energy-rich compounds are needed. Our discovery is important in this regard, and demonstrates that development of new catalysts and materials can solve this problem. Chemists have a big role to play in this area.”

Rosenthal credits a scientific article published during America’s first energy crisis in the 1970s for piquing his interest in bismuth. At that time, many researchers were examining the conversion of carbon dioxide to carbon monoxide using electricity and metal electrodes. The research went bust in the early 1980s when federal funding dried up. Rosenthal picked up the trail and blazed a new one.

“With this advance, there are at least a dozen things we need to follow up on,” Rosenthal notes. “One successful study usually leads to more questions and possibilities, not final answers.”

Rosenthal’s lab will be operating at full tilt this summer, exploring some of those questions. And his research team of seven will have some company. Through the American Chemical Society’s Project SEED summer research program, budding scientists from nearby Newark High School will join Rosenthal’s team for further study of this bismuth-based catalyst.

Article by Tracey Bryant

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>