Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A cheaper drive to 'cool' fuels

UD scientists pioneer inexpensive catalyst to drive synthetic fuel production
University of Delaware chemist Joel Rosenthal is driven to succeed in the renewable energy arena.

Working in his lab in UD’s Department of Chemistry and Biochemistry, Rosenthal and doctoral student John DiMeglio have developed an inexpensive catalyst that uses the electricity generated from solar energy to convert carbon dioxide, a major greenhouse gas, into synthetic fuels for powering cars, homes and businesses.
The research is published in the June 19 issue of the Journal of the American Chemical Society.

Gold and silver represent the “gold standard” in the world of electrocatalysts for conversion of carbon dioxide to carbon monoxide. But Rosenthal and his research team have pioneered the development of a much cheaper alternative to these pricey, precious metals. It’s bismuth, a silvery metal with a pink hue that’s a key ingredient in Pepto-Bismol, the famous pink elixir for settling an upset stomach.

An ounce of bismuth is 50 to 100 times cheaper than an ounce of silver, and 2,000 times cheaper than an ounce of gold, Rosenthal says. Bismuth is more plentiful than gold and silver, it is well distributed globally and is a byproduct in the refining of lead, tin and copper.

Moreover, Rosenthal says his UD-patented catalyst offers other important advantages: selectivity and efficiency in converting carbon dioxide to fuel.

“Most catalysts do not selectively make one compound when combined with carbon dioxide — they make a whole slew,” Rosenthal explains. “Our goal was to develop a catalyst that was extremely selective in producing carbon monoxide and to power the reaction using solar energy.”

Many of us hear ‘”carbon monoxide” and think “poison.”

“It’s true that you do not want to be in a closed room with carbon monoxide,” Rosenthal says. “But carbon monoxide is very valuable as a commodity chemical because it’s extremely energy rich and has many uses.”

Carbon monoxide is used industrially in the water-gas shift reaction to make hydrogen gas. It also is a prime feedstock for the Fischer-Tropsch process, which allows for the production of synthetic petroleum, gasoline and diesel.

Commercial production of synthetic petroleum is under way or in development in a number of countries, including Australia and New Zealand, China and Japan, South Africa and Qatar.

Rosenthal says that if carbon dioxide emissions become taxed in the future due to continuing concerns about global warming, his solar-driven catalyst for making synthetic fuel will compete even better economically with fossil fuels.

“This catalyst is a critically important linchpin,” Rosenthal says. “Using solar energy to drive the production of liquid fuels such as gasoline from CO2 is one of the holy grails in renewable energy research. In order to do this on a practical scale, inexpensive catalysts that can convert carbon dioxide to energy-rich compounds are needed. Our discovery is important in this regard, and demonstrates that development of new catalysts and materials can solve this problem. Chemists have a big role to play in this area.”

Rosenthal credits a scientific article published during America’s first energy crisis in the 1970s for piquing his interest in bismuth. At that time, many researchers were examining the conversion of carbon dioxide to carbon monoxide using electricity and metal electrodes. The research went bust in the early 1980s when federal funding dried up. Rosenthal picked up the trail and blazed a new one.

“With this advance, there are at least a dozen things we need to follow up on,” Rosenthal notes. “One successful study usually leads to more questions and possibilities, not final answers.”

Rosenthal’s lab will be operating at full tilt this summer, exploring some of those questions. And his research team of seven will have some company. Through the American Chemical Society’s Project SEED summer research program, budding scientists from nearby Newark High School will join Rosenthal’s team for further study of this bismuth-based catalyst.

Article by Tracey Bryant

Andrea Boyle Tippett | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>