Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to use hydrogen as an alternative fuel source has been discovered

08.10.2008
A team of scientists from the Universidad Complutense de Madrid (UCM) has designed a material with such high ion conductivity that it allows the use of hydrogen as a clean fuel. The research work has been published in the prestigious journal “Science”.

Fuel cells are the foundation of this technology which, if it becomes industrially viable, would represent the beginning of an energy revolution that would replace the current fossil fuel based system by a model based on hydrogen. This would be an energy source that is practically endless and since it only generates water as a combustion by-product, it is ecologically friendly.

The function of fuel cells is similar to that of batteries, but while batteries only store energy in a closed chemical system, fuel cells produce energy by combusting hydrogen.

To accomplish this, fuel cells require an electrolyte that permits the flow of ions between the electrodes. The problem that scientists currently face is that a temperature of up to 800 degrees Celsius is needed to achieve a high enough ionic conductivity. Therefore the challenge they must overcome is how to reduce the working temperature of this technology to an acceptable range.

Colossal ionic conductivity

Towards this end, a research group at the Complutense University has produced a material with a new structure by alternating layers of an ion conductive material that is currently used in fuel cells (Yttria-stabilized zirconia) with a dielectric material (Strontium titanate). The combination of these two materials with very diverse crystalline structures has produced a rare atomic disposition full of gaps that act as a path for the flow of ions. This results in a colossal ionic conductivity at the transition surface between the two materials.

The image of the molecular structure of this material has been obtained at the Oak Ridge national laboratory (USA) using a scanning transmission electron microscope with a resolution of less than 0,1 nanometres (the approximate size of an hydrogen atom). The researchers were very surprised to see in the images a perfectly structured growth at the atomic level, in spite of the very different structures of the materials. As a matter of fact, this result was absolutely unexpected according to the experience gathered from the analysis of this type of structures.

An even greater surprise was the high degree of ionic conductivity, measured at the Universidad Complutense in collaboration with the Universidad Politécnica de Madrid. It is about a hundred million times higher than that of materials used at present for the fabrication of fuel cells. This characteristic could allow their use at room temperature, permitting extensive use of hydrogen as an alternative energy source.

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>