Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-dimensional Light Emitting Diodes for future lighting technologies

12.07.2012
The Institute of Semiconductor Technology at Technische Universität (TU) Braunschweig is engaged in an EU-research project ‘GECCO’ developing a new pioneering generation of white light emitting diodes.
The innovative 3-dimensional assembly of the diodes is expected to provide more than tenfold the quantity of light output in comparison to those planar LEDs currently in use. The financial grant for this project amounts to a total sum of 3.8 million Euro, whereas the share of the TU Braunschweig amounts to 1.2 million Euro.

Already now, modern high-performance LEDs provide a bright light output at high efficiency and are meanwhile applied for automobile headlights, for example. At present, the production process for these kinds of LEDs is still not cost efficient enough and also the efficiency of these LEDs needs further improvement.

Tiny 'lighthouses' are more efficient

The international team of the GECCO project with their partners from Madrid, Bristol, Lodz, the OSRAM AG Munich and the OSRAM OS GmbH Regensburg is working hard on achieving their ambitious objectives.
Up to now, LEDs are being constructed in a planar way, meaning in layers and completely flat. The more light is being required, the more wafer area has to be produced, which is an expensive and laborious approach. The exceptional idea of the GECCO project is to assemble LEDs in a three-dimensional way so that actually every LED consists of a ‘light emitting tower’ from which the entire vertical surface is emitting light. Obviously the surface of the tower is much larger compared to the ground area of a planar LED. And in fact, it is exactly the gain of light emitting area that leads to a higher light output.

Thus, the manufacturing of an LED becomes much more cost-effective and as a result replacing ancient electric bulbs, halogen lamps as well as energy saving bulbs to LEDs is getting a lot more profitable. Considering the fact that currently 20 % of electrical energy worldwide is being utilized for illumination, this innovation provides an enormous potential as far as cost-effectiveness is concerned. In addition, LED lighting is particularly important for future electric mobility. Energy saving is of utmost importance in electric cars.
A million LEDs per square millimeter

The dimensions of the ‘light emitting towers’ are within the micrometer range. This means approximately one million LEDs fit on an area of one square millimeter. This process requires utmost precision which can only be achieved by applying nanotechnology manufacturing techniques.

The GECCO project is coordinated by Prof. Andreas Waag from the Institute of Semiconductor Technology, which is part of the Electrical Engineering Department of the Technische Universität Braunschweig.
With this project the Faculty of Electrical Engineering, Information Technology, Physics sets another example as to the further and ongoing strengthening of the University’s research profile in the specialization of NanoSystemsEngineering – this time in the true sense of the word – a bright and shining sign.

Background

The Institute of Semiconductor (IHT) is an institution of the Technische Universität Braunschweig and belongs to the Faculty of Electrical Engineering, Information Technology, Physics. The institute and its 40 staff members are engaged in particular in the research of semiconductor nanostructures and their application among others for nanoLEDs, the hydrogen generation, gas sensors, thermoelectrical generators, high-temperature and nanoparticle-sensors as well as solar cells.

For further information, please contact:
Prof. Dr. Andreas Waag
Institute of Semiconductor Technology
Technische Universität Braunschweig
Hans-Sommer-Strasse 66
38106 Braunschweig
Germany
a.waag@tu-braunschweig.de
phone +49-531-391-3774 (secretary) or -3773

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-braunschweig.de
http://www.iht.tu-bs.de/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>