Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-dimensional Light Emitting Diodes for future lighting technologies

12.07.2012
The Institute of Semiconductor Technology at Technische Universität (TU) Braunschweig is engaged in an EU-research project ‘GECCO’ developing a new pioneering generation of white light emitting diodes.
The innovative 3-dimensional assembly of the diodes is expected to provide more than tenfold the quantity of light output in comparison to those planar LEDs currently in use. The financial grant for this project amounts to a total sum of 3.8 million Euro, whereas the share of the TU Braunschweig amounts to 1.2 million Euro.

Already now, modern high-performance LEDs provide a bright light output at high efficiency and are meanwhile applied for automobile headlights, for example. At present, the production process for these kinds of LEDs is still not cost efficient enough and also the efficiency of these LEDs needs further improvement.

Tiny 'lighthouses' are more efficient

The international team of the GECCO project with their partners from Madrid, Bristol, Lodz, the OSRAM AG Munich and the OSRAM OS GmbH Regensburg is working hard on achieving their ambitious objectives.
Up to now, LEDs are being constructed in a planar way, meaning in layers and completely flat. The more light is being required, the more wafer area has to be produced, which is an expensive and laborious approach. The exceptional idea of the GECCO project is to assemble LEDs in a three-dimensional way so that actually every LED consists of a ‘light emitting tower’ from which the entire vertical surface is emitting light. Obviously the surface of the tower is much larger compared to the ground area of a planar LED. And in fact, it is exactly the gain of light emitting area that leads to a higher light output.

Thus, the manufacturing of an LED becomes much more cost-effective and as a result replacing ancient electric bulbs, halogen lamps as well as energy saving bulbs to LEDs is getting a lot more profitable. Considering the fact that currently 20 % of electrical energy worldwide is being utilized for illumination, this innovation provides an enormous potential as far as cost-effectiveness is concerned. In addition, LED lighting is particularly important for future electric mobility. Energy saving is of utmost importance in electric cars.
A million LEDs per square millimeter

The dimensions of the ‘light emitting towers’ are within the micrometer range. This means approximately one million LEDs fit on an area of one square millimeter. This process requires utmost precision which can only be achieved by applying nanotechnology manufacturing techniques.

The GECCO project is coordinated by Prof. Andreas Waag from the Institute of Semiconductor Technology, which is part of the Electrical Engineering Department of the Technische Universität Braunschweig.
With this project the Faculty of Electrical Engineering, Information Technology, Physics sets another example as to the further and ongoing strengthening of the University’s research profile in the specialization of NanoSystemsEngineering – this time in the true sense of the word – a bright and shining sign.

Background

The Institute of Semiconductor (IHT) is an institution of the Technische Universität Braunschweig and belongs to the Faculty of Electrical Engineering, Information Technology, Physics. The institute and its 40 staff members are engaged in particular in the research of semiconductor nanostructures and their application among others for nanoLEDs, the hydrogen generation, gas sensors, thermoelectrical generators, high-temperature and nanoparticle-sensors as well as solar cells.

For further information, please contact:
Prof. Dr. Andreas Waag
Institute of Semiconductor Technology
Technische Universität Braunschweig
Hans-Sommer-Strasse 66
38106 Braunschweig
Germany
a.waag@tu-braunschweig.de
phone +49-531-391-3774 (secretary) or -3773

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-braunschweig.de
http://www.iht.tu-bs.de/

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>