Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D-printed, soft, four legged robot can walk on sand and stone

17.05.2017

Engineers at the University of California San Diego have developed the first soft robot that is capable of walking on rough surfaces, such as sand and pebbles. The 3D-printed, four-legged robot can climb over obstacles and walk on different terrains.

Researchers led by Michael Tolley, a mechanical engineering professor at the University of California San Diego, will present the robot at the IEEE International Conference on Robotics and Automation from May 29 to June 3 in Singapore. The robot could be used to capture sensor readings in dangerous environments or for search and rescue.


The breakthrough was possible thanks to a high-end printer that allowed researchers to print soft and rigid materials together within the same components. This made it possible for researchers to design more complex shapes for the robot's legs. The legs are made up of three parallel, connected sealed inflatable chambers, or actuators, 3-D-printed from a rubber-like material. The chambers are hollow on the inside, so they can be inflated. On the outside, the chambers are bellowed, which allows engineers to better control the legs' movements. For example, when one chamber is inflated and the other two aren't, the leg bends. The legs are laid out in the shape of an X and connected to a rigid body.

Credit: Jacobs School of Engineering/UC San Diego

The breakthrough was possible thanks to a high-end printer that allowed researchers to print soft and rigid materials together within the same components. This made it possible for researchers to design more complex shapes for the robot's legs.

Bringing together soft and rigid materials will help create a new generation of fast, agile robots that are more adaptable than their predecessors and can safely work side by side with humans, said Tolley. The idea of blending soft and hard materials into the robot's body came from nature, he added. "In nature, complexity has a very low cost," Tolley said. "Using new manufacturing techniques like 3D printing, we're trying to translate this to robotics."

3-D printing soft and rigid robots rather than relying on molds to manufacture them is much cheaper and faster, Tolley pointed out. So far, soft robots have only been able to shuffle or crawl on the ground without being able to lift their legs. This robot is actually able to walk.

Researchers successfully tested the tethered robot on large rocks, inclined surfaces and sand (see video). The robot also was able to transition from walking to crawling into an increasingly confined space, much like a cat wiggling into a crawl space.

Dylan Drotman, a Ph.D. student at the Jacobs School of Engineering at UC San Diego, led the effort to design the legs and the robot's control systems. He also developed models to predict how the robot would move, which he then compared to how the robot actually behaved in a real-life environment.

How it's made

The legs are made up of three parallel, connected sealed inflatable chambers, or actuators, 3D-printed from a rubber-like material. The chambers are hollow on the inside, so they can be inflated. On the outside, the chambers are bellowed, which allows engineers to better control the legs' movements. For example, when one chamber is inflated and the other two aren't, the leg bends. The legs are laid out in the shape of an X and connected to a rigid body.

The robot's gait depends on the order of the timing, the amount of pressure and the order in which the pistons in its four legs are inflated. The robot's walking behavior in real life also closely matched the researcher's predictions. This will allow engineers to make better educated decisions when designing soft robots.

The current quadruped robot prototype is tethered to an open source board and an air pump. Researchers are now working on miniaturizing both the board and the pump so that the robot can walk independently. The challenge here is to find the right design for the board and the right components, such as power sources and batteries, Tolley said.

###

Videos of the robot:

https://youtu.be/LdBLkM0ZmEw

https://youtu.be/hNYt5JUfrDw

Full photo gallery:

https://www.flickr.com/photos/jsoe/sets/72157680750011434

3D Printed Soft Actuators for a Legged Robot Capable of Navigating Unstructured Terrain

Authors: Dylan Drotman, Saurabh Jadhav, Mahmood Karimi, Philip deZonia, Michael T. Tolley

This work is supported by the UC San Diego Frontiers of Innovation Scholarship Program and the Office of Naval Research grant number N000141712062.

Ioana Patringenaru | EurekAlert!

Further reports about: 3D IEEE ROBOT batteries manufacturing techniques power sources

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>