Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 20 percent efficiency: SCHOTT Solar sets new record for monocrystalline screen-printed solar cells

24.08.2011
  • Industrial size 156 mm x 156 mm cell achieves 20.2 percent efficiency for the first time ever
  • Cell power of 4.92 W
  • Approach used in the world record poly module has now been applied successfully to mono cells

SCHOTT Solar has achieved yet another top performance. The solar company based in Mainz, Germany, has succeeded in manufacturing the world's first industrial size 156 mm x 156 mm monocrystalline screen-printed solar cell that achieves 20.2 percent efficiency.

This measurement was confirmed independently by Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany at the request of SCHOTT Solar. SCHOTT Solar AG has thus announced yet another major success in developing industry-oriented manufacturing processes for high-efficiency solar cells.

SCHOTT Solar laid the foundation for this outstanding achievement by developing new multicrystalline cell concepts that earned the company the world record for module efficiency of 17.6 percent in 2010. "We then decided to intensify our efforts to develop monocrystalline cells at the beginning of 2011. We were thus able to apply the know-how we had gained in more than three years of development work on multicrystalline solar cells to monocrystalline wafers in a consistent manner," explains Dr. Axel Metz, Director of Solar Cell Development at SCHOTT Solar in emphasizing the special significance of this achievement.

Early attempts to transfer these industry-oriented processes to Czochralski silicon wafers already allowed the researchers to achieve cell efficiencies of well over 19 percent rather quickly. The team at SCHOTT Solar then concentrated on improving the front side of the cell in order to be able to break through the 20 percent mark.

Thanks to a very fruitful collaboration with the Schmid Group from Freudenstadt, Germany, they were able to combine the Schmid selective emitter technology that is already well-established in manufacturing with the passivated rear side contact (PERC) technology of SCHOTT Solar. Some of this research work has been supported by government funding. The result is now the world's first 156 mm x 156 mm screen-printed solar cell with 20.2 percent efficiency.

"The cell performance of 4.92 W that we were able to achieve has encouraged the entire team to begin working on optimizing the actual manufacturing process and to apply these results to the development of highly efficient modules," says Klaus Wangemann, Head of Development at SCHOTT Solar AG. SCHOTT Solar will be releasing further details on how the new cell technology will be used in an actual product very shortly. This information will also be shared at the 26th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC). The EU PVSEC will be held in Hamburg from September 5 - 9 and SCHOTT Solar will be exhibiting at booth A37 in hall B5.

Pressekontakt:
SCHOTT AG
Christina Rettig
PR Manager
Tel: +49 (0)6131 - 66 4094
Fax: +49 (0)3641 - 28889 141
christina.rettig@schott.com

Fink & Fuchs Public Relations AG
Alexandra Mainka
Agentur
Tel: +49 (0)611 - 74131 86
Fax: +49 (0)611 - 74131 30
alexandra.mainka@ffpr.de
www.ffpress.net

Christina Rettig | SCHOTT AG
Further information:
http://www.schottsolar.de

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>