Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

€ 10 million for more realistic rotor blade tests

13.01.2016

For a normal test of a prototype rotor blade, the simultaneously occuring loads in the field are simplified. As part of the “Future rotor blade concept” research project, scientists at Fraunhofer IWES are developing new methods that provide significantly more realistic data and allow a load-appropriate design to be produced. The Federal Ministry for Economic Affairs and Energy and the Federal State of Bremen intend to invest € 10 million to further develop methodological expertise and an innovative test infrastructure in Bremerhaven.

Reliable and economical determination of the operational robustness of XXL blades


New testing methods will focusing on sensitive parts of the rotor blade.

Fraunhofer IWES/Diether Hergeth

Better safe than sorry: Since, in reality, only one rotor blade will undergo the complete blade testing procedure right through to certification, the calculative safety factors selected are not necessarily those leading to optimum costs, but rather those which can cope with the operational loads with certainty. A higher number of tests that can be realized at reasonable cost allow the safety margins to be reduced, which, in turn, means a more economical design for the rotor blades.

This is the starting point for the rotor blade experts at Fraunhofer IWES. Separating a blade into segments for testing - e.g. root segment and rotor blade tip - has two advantages: Tests become possible at higher frequencies and with a more accurate load profile. The tests are rendered even more accurate when individual sections with a critically high load and greater material thickness or strong curvatures, for example, are investigated separately. This innovative approach not only produces more informative results, but also reduces the testing times by a calculated 30%, which means a noticeable cost saving.

Test infrastructure to be operational by the middle of 2018

At the conclusion of the first phase of the research project, which will take five years in total, the infrastructure will be operational and the test methods developed. Florian Sayer, head of department, commented on the time frame as follows: “It is a very ambitious schedule, but we can build on ten years of experience with mechanical test methods and a sound understanding of material properties and the behaviour of fibre composites; and the pressure in the industry to innovate is a definite incentive.”

Rotor blade for detailed investigations

While component and blade segment tests are already turning up more and more frequently in the industry’s list of requirements, the testing of critical sections is still a long way off. This is done by dividing the rotor blade according to the requirements of the investigation in order to be able to take a closer look at the critical areas. The subsequent execution of the load tests requires a complex infrastructure and profound knowledge of how complex load cases affect the structure.

A so-called hexapod test stand with a Reynolds platform to apply torsion forces and bending moments in parallel is being constructed in Bremerhaven - right next to the established complete-blade test stands and material testing laboratories. Manufacturers of rotor blades benefit from significantly shorter tests and particularly realistic load simulations, and their modified infrastructure set-up leads to lower energy costs as well.

From the overall perspective of the wind power industry, these test facilities play their part in reducing the energy production costs: When developers have a sure foundation on which they can employ greater creative freedom to develop a blade design optimised for efficiency and reliability, the economic efficiency of wind power utilization and thus its development potential increases.

Weitere Informationen:

http://www.windenergie.iwes.fraunhofer.de/en.html

Britta Rollert | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

More articles from Power and Electrical Engineering:

nachricht Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants
25.05.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>