Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

€ 10 million for more realistic rotor blade tests

13.01.2016

For a normal test of a prototype rotor blade, the simultaneously occuring loads in the field are simplified. As part of the “Future rotor blade concept” research project, scientists at Fraunhofer IWES are developing new methods that provide significantly more realistic data and allow a load-appropriate design to be produced. The Federal Ministry for Economic Affairs and Energy and the Federal State of Bremen intend to invest € 10 million to further develop methodological expertise and an innovative test infrastructure in Bremerhaven.

Reliable and economical determination of the operational robustness of XXL blades


New testing methods will focusing on sensitive parts of the rotor blade.

Fraunhofer IWES/Diether Hergeth

Better safe than sorry: Since, in reality, only one rotor blade will undergo the complete blade testing procedure right through to certification, the calculative safety factors selected are not necessarily those leading to optimum costs, but rather those which can cope with the operational loads with certainty. A higher number of tests that can be realized at reasonable cost allow the safety margins to be reduced, which, in turn, means a more economical design for the rotor blades.

This is the starting point for the rotor blade experts at Fraunhofer IWES. Separating a blade into segments for testing - e.g. root segment and rotor blade tip - has two advantages: Tests become possible at higher frequencies and with a more accurate load profile. The tests are rendered even more accurate when individual sections with a critically high load and greater material thickness or strong curvatures, for example, are investigated separately. This innovative approach not only produces more informative results, but also reduces the testing times by a calculated 30%, which means a noticeable cost saving.

Test infrastructure to be operational by the middle of 2018

At the conclusion of the first phase of the research project, which will take five years in total, the infrastructure will be operational and the test methods developed. Florian Sayer, head of department, commented on the time frame as follows: “It is a very ambitious schedule, but we can build on ten years of experience with mechanical test methods and a sound understanding of material properties and the behaviour of fibre composites; and the pressure in the industry to innovate is a definite incentive.”

Rotor blade for detailed investigations

While component and blade segment tests are already turning up more and more frequently in the industry’s list of requirements, the testing of critical sections is still a long way off. This is done by dividing the rotor blade according to the requirements of the investigation in order to be able to take a closer look at the critical areas. The subsequent execution of the load tests requires a complex infrastructure and profound knowledge of how complex load cases affect the structure.

A so-called hexapod test stand with a Reynolds platform to apply torsion forces and bending moments in parallel is being constructed in Bremerhaven - right next to the established complete-blade test stands and material testing laboratories. Manufacturers of rotor blades benefit from significantly shorter tests and particularly realistic load simulations, and their modified infrastructure set-up leads to lower energy costs as well.

From the overall perspective of the wind power industry, these test facilities play their part in reducing the energy production costs: When developers have a sure foundation on which they can employ greater creative freedom to develop a blade design optimised for efficiency and reliability, the economic efficiency of wind power utilization and thus its development potential increases.

Weitere Informationen:

http://www.windenergie.iwes.fraunhofer.de/en.html

Britta Rollert | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>