Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

€ 10 million for more realistic rotor blade tests

13.01.2016

For a normal test of a prototype rotor blade, the simultaneously occuring loads in the field are simplified. As part of the “Future rotor blade concept” research project, scientists at Fraunhofer IWES are developing new methods that provide significantly more realistic data and allow a load-appropriate design to be produced. The Federal Ministry for Economic Affairs and Energy and the Federal State of Bremen intend to invest € 10 million to further develop methodological expertise and an innovative test infrastructure in Bremerhaven.

Reliable and economical determination of the operational robustness of XXL blades


New testing methods will focusing on sensitive parts of the rotor blade.

Fraunhofer IWES/Diether Hergeth

Better safe than sorry: Since, in reality, only one rotor blade will undergo the complete blade testing procedure right through to certification, the calculative safety factors selected are not necessarily those leading to optimum costs, but rather those which can cope with the operational loads with certainty. A higher number of tests that can be realized at reasonable cost allow the safety margins to be reduced, which, in turn, means a more economical design for the rotor blades.

This is the starting point for the rotor blade experts at Fraunhofer IWES. Separating a blade into segments for testing - e.g. root segment and rotor blade tip - has two advantages: Tests become possible at higher frequencies and with a more accurate load profile. The tests are rendered even more accurate when individual sections with a critically high load and greater material thickness or strong curvatures, for example, are investigated separately. This innovative approach not only produces more informative results, but also reduces the testing times by a calculated 30%, which means a noticeable cost saving.

Test infrastructure to be operational by the middle of 2018

At the conclusion of the first phase of the research project, which will take five years in total, the infrastructure will be operational and the test methods developed. Florian Sayer, head of department, commented on the time frame as follows: “It is a very ambitious schedule, but we can build on ten years of experience with mechanical test methods and a sound understanding of material properties and the behaviour of fibre composites; and the pressure in the industry to innovate is a definite incentive.”

Rotor blade for detailed investigations

While component and blade segment tests are already turning up more and more frequently in the industry’s list of requirements, the testing of critical sections is still a long way off. This is done by dividing the rotor blade according to the requirements of the investigation in order to be able to take a closer look at the critical areas. The subsequent execution of the load tests requires a complex infrastructure and profound knowledge of how complex load cases affect the structure.

A so-called hexapod test stand with a Reynolds platform to apply torsion forces and bending moments in parallel is being constructed in Bremerhaven - right next to the established complete-blade test stands and material testing laboratories. Manufacturers of rotor blades benefit from significantly shorter tests and particularly realistic load simulations, and their modified infrastructure set-up leads to lower energy costs as well.

From the overall perspective of the wind power industry, these test facilities play their part in reducing the energy production costs: When developers have a sure foundation on which they can employ greater creative freedom to develop a blade design optimised for efficiency and reliability, the economic efficiency of wind power utilization and thus its development potential increases.

Weitere Informationen:

http://www.windenergie.iwes.fraunhofer.de/en.html

Britta Rollert | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>