Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'No-sleep energy bugs' drain smartphone batteries

14.06.2012
Researchers have proposed a method to automatically detect a new class of software glitches in smartphones called "no-sleep energy bugs," which can entirely drain batteries while the phones are not in use.

"These energy bugs are a silent battery killer," said Y. Charlie Hu, a Purdue University professor of electrical and computer engineering. "A fully charged phone battery can be drained in as little as five hours."

Because conserving battery power is critical for smartphones, the industry has adopted "an aggressive sleep policy," he said.

"What this means is that smartphones are always in a sleep mode, by default. When there are no active user interactions such as screen touches, every component, including the central processor, stays off unless an app instructs the operating system to keep it on."

Various background operations need to be performed while the phone is idle.

"For example, a mailer may need to automatically update email by checking with the remote server," Hu said.

To prevent the phone from going to sleep during such operations, smartphone manufacturers make application programming interfaces, or APIs, available to app developers. The developers insert the APIs into apps to instruct the phone to stay awake long enough to perform necessary operations.

"App developers have to explicitly juggle different power control APIs that are exported from the operating systems of the smartphones," Hu said. "Unfortunately, programmers are only human. They make mistakes when using these APIs, which leads to software bugs that mishandle power control, preventing the phone from engaging the sleep mode. As a result, the phone stays awake and drains the battery."

Findings are detailed in a research paper being presented during the 10th International Conference on Mobile Systems, Applications and Services, or MobiSys 2012, June 25-29 in the United Kingdom. The paper was written by doctoral students Abhinav Pathak and Abhilash Jindal, Hu, and Samuel Midkiff, a Purdue professor of electrical and computer engineering.

The researchers have completed the first systematic study of the no-sleep bugs and have proposed a method for automatically detecting them.

"We've had anecdotal evidence concerning these no-sleep energy bugs, but there has not been any systematic study of them until now," Midkiff said.

The researchers studied 187 Android applications that were found to contain Android's explicit power control APIs, called "wakelocks." Of the 187 apps, 42 were found to contain errors - or bugs - in their wakelock code. Findings showed the new tool accurately detected all 12 previously known instances of no-sleep energy bugs and found 30 new bugs in the apps.

The glitch has been found in interactive apps, such as phone applications and services for telephony on Android that must work even though the user isn't touching the phone. The app may fail to engage the sleep mode after the interactive session is completed.

Smartphone users, meanwhile, don't know that their phones have the bugs.

"You don't see any difference," Hu said. "You put it in your pocket and you think everything is fine. You take it out, and your battery is dead."

To detect bugs in the applications, the researchers modified a tool called a compiler, which translates code written in computer languages into the binary code that computers understand. The tool they developed adds new functionality to the compiler so that it can determine where no-sleep bugs might exist.

"The tool analyzes the binary code and automatically and accurately detects the presence of the no-sleep bugs," Midkiff said.

The Purdue researchers have coined the term "power-encumbered programming" to describe the smartphone energy bugs. Researchers concentrated on the Android smartphone, but the same types of bugs appear to affect other brands, Hu said.

The research has been funded in part by the National Science Foundation. Pathak is supported by an Intel Ph.D. fellowship.

Related websites:
Y. Charlie Hu: https://engineering.purdue.edu/ECE/People/profile?resource_id=3351

MobiSys 2012: http://www.sigmobile.org/mobisys/2012/index.php
Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120613HuSmartphoneBugs.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>