Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'No-sleep energy bugs' drain smartphone batteries

14.06.2012
Researchers have proposed a method to automatically detect a new class of software glitches in smartphones called "no-sleep energy bugs," which can entirely drain batteries while the phones are not in use.

"These energy bugs are a silent battery killer," said Y. Charlie Hu, a Purdue University professor of electrical and computer engineering. "A fully charged phone battery can be drained in as little as five hours."

Because conserving battery power is critical for smartphones, the industry has adopted "an aggressive sleep policy," he said.

"What this means is that smartphones are always in a sleep mode, by default. When there are no active user interactions such as screen touches, every component, including the central processor, stays off unless an app instructs the operating system to keep it on."

Various background operations need to be performed while the phone is idle.

"For example, a mailer may need to automatically update email by checking with the remote server," Hu said.

To prevent the phone from going to sleep during such operations, smartphone manufacturers make application programming interfaces, or APIs, available to app developers. The developers insert the APIs into apps to instruct the phone to stay awake long enough to perform necessary operations.

"App developers have to explicitly juggle different power control APIs that are exported from the operating systems of the smartphones," Hu said. "Unfortunately, programmers are only human. They make mistakes when using these APIs, which leads to software bugs that mishandle power control, preventing the phone from engaging the sleep mode. As a result, the phone stays awake and drains the battery."

Findings are detailed in a research paper being presented during the 10th International Conference on Mobile Systems, Applications and Services, or MobiSys 2012, June 25-29 in the United Kingdom. The paper was written by doctoral students Abhinav Pathak and Abhilash Jindal, Hu, and Samuel Midkiff, a Purdue professor of electrical and computer engineering.

The researchers have completed the first systematic study of the no-sleep bugs and have proposed a method for automatically detecting them.

"We've had anecdotal evidence concerning these no-sleep energy bugs, but there has not been any systematic study of them until now," Midkiff said.

The researchers studied 187 Android applications that were found to contain Android's explicit power control APIs, called "wakelocks." Of the 187 apps, 42 were found to contain errors - or bugs - in their wakelock code. Findings showed the new tool accurately detected all 12 previously known instances of no-sleep energy bugs and found 30 new bugs in the apps.

The glitch has been found in interactive apps, such as phone applications and services for telephony on Android that must work even though the user isn't touching the phone. The app may fail to engage the sleep mode after the interactive session is completed.

Smartphone users, meanwhile, don't know that their phones have the bugs.

"You don't see any difference," Hu said. "You put it in your pocket and you think everything is fine. You take it out, and your battery is dead."

To detect bugs in the applications, the researchers modified a tool called a compiler, which translates code written in computer languages into the binary code that computers understand. The tool they developed adds new functionality to the compiler so that it can determine where no-sleep bugs might exist.

"The tool analyzes the binary code and automatically and accurately detects the presence of the no-sleep bugs," Midkiff said.

The Purdue researchers have coined the term "power-encumbered programming" to describe the smartphone energy bugs. Researchers concentrated on the Android smartphone, but the same types of bugs appear to affect other brands, Hu said.

The research has been funded in part by the National Science Foundation. Pathak is supported by an Intel Ph.D. fellowship.

Related websites:
Y. Charlie Hu: https://engineering.purdue.edu/ECE/People/profile?resource_id=3351

MobiSys 2012: http://www.sigmobile.org/mobisys/2012/index.php
Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120613HuSmartphoneBugs.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>