Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New '3-D' transistors promising future chips, lighter laptops

07.12.2011
Researchers from Purdue and Harvard universities have created a new type of transistor made from a material that could replace silicon and have a 3-D structure instead of conventional flat computer chips.

The approach could enable engineers to build faster, more compact and efficient integrated circuits and lighter laptops that generate less heat than today's. The transistors contain tiny nanowires made not of silicon, like conventional transistors, but from a material called indium-gallium-arsenide.

The device was created using a so-called "top-down" method, which is akin to industrial processes to precisely etch and position components in transistors. Because the approach is compatible with conventional manufacturing processes, it is promising for adoption by industry, said Peide "Peter" Ye, a professor of electrical and computer engineering at Purdue.

A new generation of silicon computer chips, due to debut in 2012, will contain transistors having a vertical structure instead of a conventional flat design. However, because silicon has a limited "electron mobility" - how fast electrons flow - other materials will likely be needed soon to continue advancing transistors with this 3-D approach, Ye said.

Indium-gallium-arsenide is among several promising semiconductors being studied to replace silicon. Such semiconductors are called III-V materials because they combine elements from the third and fifth groups of the periodic table.

"Industry and academia are racing to develop transistors from the III-V materials," Ye said. "Here, we have made the world's first 3-D gate-all-around transistor on much higher-mobility material than silicon, the indium-gallium-arsenide."

Findings will be detailed in a paper to be presented during the International Electron Devices Meeting on Dec. 5-7 in Washington, D.C. The work is led by Purdue doctoral student Jiangjiang Gu; Harvard doctoral student Yiqun Liu; Roy Gordon, Harvard's Thomas D. Cabot Professor of Chemistry; and Ye.

Transistors contain critical components called gates, which enable the devices to switch on and off and to direct the flow of electrical current. In today's chips, the length of these gates is about 45 nanometers, or billionths of a meter. However, in 2012 industry will introduce silicon-based 3-D transistors having a gate length of 22 nanometers.

"Next year if you buy a computer it will have the 22-nanometer gate length and 3-D silicon transistors," Ye said.

The 3-D design is critical because the 22-nanometer gate lengths will not work in a flat design.

"Once you shrink gate lengths down to 22 nanometers on silicon you have to do more complicated structure design," Ye said. "The ideal gate is a necklike, gate-all-around structure so that the gate surrounds the transistor on all sides."

The nanowires are coated with a "dielectric," which acts as a gate. Engineers are working to develop transistors that use even smaller gate lengths, 14 nanometers, by 2015.

However, further size reductions beyond 14 nanometers and additional performance improvements are likely not possible using silicon, meaning new designs and materials will be needed to continue progress, Ye said.

"Nanowires made of III-V alloys will get us to the 10 nanometer range," he said.

The new findings confirmed that the device made using a III-V material has the potential to conduct electrons five times faster than silicon.

Creating smaller transistors also will require finding a new type of insulating layer essential for the devices to switch off. As gate lengths shrink smaller than 14 nanometers, the silicon dioxide insulator used in conventional transistors fails to perform properly and is said to "leak" electrical charge.

One potential solution to this leaking problem is to replace silicon dioxide with materials that have a higher insulating value, or "dielectric constant," such as hafnium dioxide or aluminum oxide.

In the new work, the researchers applied a dielectric coating made of aluminum oxide using a method called atomic layer deposition. Because atomic layer deposition is commonly used in industry, the new design may represent a practical solution to the coming limits of conventional silicon transistors.

Using atomic layer deposition might enable engineers to design transistors having thinner oxide and metal layers for the gates, possibly consuming far less electricity than silicon devices.

"A thinner dielectric layer means speed goes up and voltage requirements go down," Ye said.

The work is funded by the National Science Foundation and the Semiconductor Research Corp. and is based at the Birck Nanotechnology Center in Purdue's Discovery Park. The latest research is similar to, but fundamentally different from, research reported by Ye's group in 2009. That work involved a design called a finFET, for fin field-effect transistor, which uses a finlike structure instead of the conventional flat design. The new design uses nanowires instead of the fin design.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Peide Ye, 765-494-7611, yep@purdue.edu

Note to Journalists: An electronic copy of the paper is available from Emil Venere, Purdue News Service, at 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>