Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Twitter to predict financial markets

26.03.2012
UC Riverside professor and collaborators build model using Twitter data that outperforms other investment strategies

A University of California, Riverside professor and several other researchers have developed a model that uses data from Twitter to help predict the traded volume and value of a stock the following day.

A trading strategy based on the model created by Vagelis Hristidis, an associate professor at the Bourns College of Engineering, one of his graduate students and three researchers at Yahoo! in Spain, outperformed other baseline strategies by between 1.4 percent and nearly 11 percent and also did better than the Dow Jones Industrial Average during a four-month simulation.

"These findings have the potential to have a big impact on market investors," said Hristidis, who specializes in data mining research, which focuses on discovering patterns in large data sets. "With so much data available from social media, many investors are looking to sort it out and profit from it."

Hristidis and his co-authors, Eduardo J. Ruiz, one of his graduate students, and Carlos Castillo, Aristides Gionis and Alejandro Jaimes, all of whom work for Yahoo! Research Barcelona, presented the findings last month at the Fifth ACM International Conference on Web Search & Data Mining in Seattle.

Hristidis and his co-authors set out to study how activity in Twitter is correlated to stock prices and traded volume. While past research has looked the sentiment, positive or negative, of tweets to predict stock price, little research has focused on the volume of tweets and the ways that tweets are linked to other tweets, topics or users. Further, past work has mostly studied the overall stock market indexes, and not individual stocks.

They obtained the daily closing price and the number of trades from Yahoo! Finance for 150 randomly selected companies in the S&P 500 Index for the first half of 2010.

Then, they developed filters to select only relevant tweets for those companies during that time period. For example, if they were looking at Apple, they needed to exclude tweets that focused on the fruit.

They expected to find the number of trades was correlated with the number of tweets. Surprisingly, the number of trades is slightly more correlated with the number of what they call "connected components." That is the number of posts about distinct topics related to one company. For example, using Apple again, there might be separate networks of posts regarding Apple's new CEO, a new product it released and its latest earnings report.

They also found stock price is slightly correlated with the number of connected components.

For the study, the researchers simulated a series of investments between March 1, 2010 and June 30, 2010 and analyzed performance using several investment strategies. During that time frame, the Dow Jones Industrial Average fell 4.2 percent.

In two variants of an autoregression model, that is buying every day stocks based on the assumption that the stock price is a function of the prices of the stock in the last few days, losses were 8.9 percent and 13.1 percent.

In the random model, in which as random set of stocks is bought every, sold at the end of the day and repeated the next day, the average loss was 5.5 percent.

In the fixed model, which involves buying a set of stocks that have best combination of market cap, company size and total debt and keeping them for the entire simulation, the average loss was 3.8 percent.

The model the researchers developed using Twitter data lost on average 2.4 percent.

Hristidis notes several potential weaknesses in the study.

First, the trading strategy worked in a period when the Dow Jones dropped, but it may not produce the same results when the Dow Jones is rising. There is also sensitivity related to the duration of the trading. For example, it took 30 days in the simulation to start outperforming the Dow Jones.

The published paper that outlines the findings can be found at http://www.cs.ucr.edu/~vagelis/publications/wsdm2012-microblog-financial.pdf.

The research by Hristidis and Ruiz was supported by the National Science Foundation.

Sean Nealon | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Apple iPhone Riverside Tweets Twitter Twitter data stock price

More articles from Business and Finance:

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>