Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The transformation to a networked factory

12.03.2014

MetamoFAB guides manufacturing companies on the path to Industry 4.0

How can companies evolve their manufacturing activities in the direction of a smart, networked factory in line with Industry 4.0? In the MetamoFAB project, Fraunhofer IAO and its cooperation partner, the Institute for Human Factors and Technology Management IAT at the University of Stuttgart, are working closely with other partners from industry and research to find the answers.

People often use the term Industry 4.0 to describe the concept of networked factories in which people and machines use smart systems to communicate with each other. As part of this concept, companies can introduce cyber-physical systems (CPS) to create more versatile manufacturing conditions while increasing the flexibility of their production and logistics.

But the transition to Industry 4.0 will not happen overnight. The necessary changes must embrace people, machines, workpieces and information technology – and there is a need to prepare companies for the paradigm shift to Industry 4.0 by taking them through an introductory process.

Without transparent CPS implementation strategies, companies cannot hope to evolve into the smart manufacturing companies of tomorrow and avoid severe disruption to their operations in the process. 

MetamoFAB is a research project that aims to developing models, methods and tools to help manufacturing companies make the transition to smart, networked factories by implementing CPS to boost productivity in their existing factories. 

The groundwork for this transformation involves mapping out the vision of a networked factory with CPS using three use cases – “Manufacturing automation technology,” “Semiconductor manufacturing,” and “Manufacturing electrical engineering components.” The solutions will be demonstrated in real-life conditions at industry partners’ sites. 

A total of eight select industry and research partners are working to make MetamoFAB a success. With funding from the German Federal Ministry of Education and Research (BMBF) as part of its “Research for the Manufacturing of Tomorrow” concept, the project is coordinated by Project Management Agency Karlsruhe (PTKA) and is contributing to the German federal government’s “Industrie 4.0” initiative.

Contact:
Manuel Kern
R&D Management
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2322
Email manuel.kern@iao.fraunhofer.de

Erdem Gelec
R&D Management
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2055
Email erdem.gelec@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/technology-innovation-manage...

Juliane Segedi | Fraunhofer-Institut

Further reports about: CPS Education German IAO Manufacturing Phone R&D activities conditions developing factories severe transition

More articles from Business and Finance:

nachricht Blockchain Set to Transform the Financial Services Market
28.09.2016 | HHL Leipzig Graduate School of Management

nachricht Paper or plastic?
08.07.2016 | University of Toronto

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>