Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppliers’ Dilemma: Top-down Versus Bottom-up; New Study Examines the Value of Point-of-Sale Data in Forecasting

11.03.2011
As retail environments become more competitive, manufacturers experience greater pressure to strike a balance between satisfying customers and minimizing costs. These suppliers struggle to accurately predict or forecast demand for goods.

A new study by a University of Arkansas logistics researcher confirms that relying on retail point-of-sale data can increase the accuracy of predictions and reduce forecasting error. But contrary to recent findings, the new study also revealed that in specific situations point-of-sale data might not be as accurate as simple order data from client stores.

The so-called “bottom-up” approach to forecasting demand for goods relies on point-of-sale data, or raw sales information, which retailers share with each other and manufacturers. This approach allows manufacturers to plan production based on overall consumer demand.

In contrast, “top-down” forecasting refers to a forecasting approach in which manufacturers do not have access to point-of-sale data and therefore must depend on order data from client stores and distribution centers. In these cases, the manufacturer must create a single forecast for a retail company’s total demand and then disaggregate that forecast for each distribution center or store.

Manufacturers and industry analysts assume that point-of-sale data consistently leads to greater accuracy, but the new study found that simple order data may be more useful for forecasting demand at the account level, which includes individual retail stores and distribution centers. This top-down approach is also more useful, the researchers found, when manufacturers are trying to accurately predict long-term issues such as production and capacity planning.

“Conventional wisdom holds that suppliers can exploit point-of-sale information to improve forecasting performance and supply-chain efficiency,” said Matt Waller, logistics professor in the Sam M. Walton College of Business. “While this is true for the most part, it doesn’t tell the whole story. In most cases, order forecasts based on point-of-sale data exhibit lower forecast errors than those based on order data, but there are specific conditions when a top-down approach based on order data can achieve more accurate demand forecasts.”

Waller and Brent Williams, assistant professor at Auburn University, empirically tested claims about the performance of top-down versus bottom-up forecasting. They then investigated whether a given supplier’s demand forecast, when based on shared, point-of-sale data, might be more accurate than forecasts based on order data. Overall, the researchers found that sharing the right data in appropriate contexts leads to greater accuracy when forecasting demand in the retail supply chain. In other words, the choice of a method – top-down or bottom-up forecasting – depended on the availability of shared, point-of-sale data.

“We find that the superiority of the top-down or bottom-up forecasting as the more accurate method depends on whether shared, point-of-sale data are used,” Waller said.

Firms benefit from a top-down approach to demand forecasting when they do not have access to point-of-sale data and must rely on order data for long-term planning for production. Furthermore, in this same context, a top-down approach should be used for short-term planning and shipping forecasts to distribution centers. When available, point-of-sale data can increase forecast accuracy and improve performance of short-term issues, such as inventory and transportation planning, the researchers found.

The study also gives retailers new insights. For example, large retailers share their point-of-sale data with suppliers generally because they have the technology and resources to do so, but this type of sharing may be even more beneficial for small retailers.

The researchers’ findings were published in the Journal of Business Logistics.

Waller holds the Garrison Endowed Chair in Supply Chain Management.

CONTACTS:
Matt Waller, professor, department of marketing and logistics
Sam M. Walton College of Business
479-575-8741, mwaller@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Business and Finance:

nachricht Europe's microtechnology industry is attuned to growth
10.03.2017 | IVAM Fachverband für Mikrotechnik

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>