Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppliers’ Dilemma: Top-down Versus Bottom-up; New Study Examines the Value of Point-of-Sale Data in Forecasting

11.03.2011
As retail environments become more competitive, manufacturers experience greater pressure to strike a balance between satisfying customers and minimizing costs. These suppliers struggle to accurately predict or forecast demand for goods.

A new study by a University of Arkansas logistics researcher confirms that relying on retail point-of-sale data can increase the accuracy of predictions and reduce forecasting error. But contrary to recent findings, the new study also revealed that in specific situations point-of-sale data might not be as accurate as simple order data from client stores.

The so-called “bottom-up” approach to forecasting demand for goods relies on point-of-sale data, or raw sales information, which retailers share with each other and manufacturers. This approach allows manufacturers to plan production based on overall consumer demand.

In contrast, “top-down” forecasting refers to a forecasting approach in which manufacturers do not have access to point-of-sale data and therefore must depend on order data from client stores and distribution centers. In these cases, the manufacturer must create a single forecast for a retail company’s total demand and then disaggregate that forecast for each distribution center or store.

Manufacturers and industry analysts assume that point-of-sale data consistently leads to greater accuracy, but the new study found that simple order data may be more useful for forecasting demand at the account level, which includes individual retail stores and distribution centers. This top-down approach is also more useful, the researchers found, when manufacturers are trying to accurately predict long-term issues such as production and capacity planning.

“Conventional wisdom holds that suppliers can exploit point-of-sale information to improve forecasting performance and supply-chain efficiency,” said Matt Waller, logistics professor in the Sam M. Walton College of Business. “While this is true for the most part, it doesn’t tell the whole story. In most cases, order forecasts based on point-of-sale data exhibit lower forecast errors than those based on order data, but there are specific conditions when a top-down approach based on order data can achieve more accurate demand forecasts.”

Waller and Brent Williams, assistant professor at Auburn University, empirically tested claims about the performance of top-down versus bottom-up forecasting. They then investigated whether a given supplier’s demand forecast, when based on shared, point-of-sale data, might be more accurate than forecasts based on order data. Overall, the researchers found that sharing the right data in appropriate contexts leads to greater accuracy when forecasting demand in the retail supply chain. In other words, the choice of a method – top-down or bottom-up forecasting – depended on the availability of shared, point-of-sale data.

“We find that the superiority of the top-down or bottom-up forecasting as the more accurate method depends on whether shared, point-of-sale data are used,” Waller said.

Firms benefit from a top-down approach to demand forecasting when they do not have access to point-of-sale data and must rely on order data for long-term planning for production. Furthermore, in this same context, a top-down approach should be used for short-term planning and shipping forecasts to distribution centers. When available, point-of-sale data can increase forecast accuracy and improve performance of short-term issues, such as inventory and transportation planning, the researchers found.

The study also gives retailers new insights. For example, large retailers share their point-of-sale data with suppliers generally because they have the technology and resources to do so, but this type of sharing may be even more beneficial for small retailers.

The researchers’ findings were published in the Journal of Business Logistics.

Waller holds the Garrison Endowed Chair in Supply Chain Management.

CONTACTS:
Matt Waller, professor, department of marketing and logistics
Sam M. Walton College of Business
479-575-8741, mwaller@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>