Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Bank Risk-Assessment Tool Not Responding Adequately to Market Fluctuations

27.05.2009
A new study from North Carolina State University indicates that regulators need to do more to ensure that banks are adequately computing their Value-at-Risk (VaR) to reflect fluctuations in financial markets.

The study finds that the tests used by regulators do not detect when VaRs inaccurately account for significant swings in the market, which is significant because VaRs are key risk-assessment tools financial institutions use to determine the amount of capital they need to keep on hand to cover potential losses.

"Failing to modify the VaR to reflect market fluctuations is important," study co-author Dr. Denis Pelletier says, "because it could lead to a bank exhausting its on-hand cash reserves." Pelletier, an assistant professor of economics at NC State, says "Problems can come up if banks miscalculate their VaR and have insufficient funds on hand to cover their losses."

VaRs are a way to measure the risk exposure of a company's portfolio. Economists can determine the range of potential future losses and provide a statistical probability for those losses. For example, there may be a 10 percent chance that a company could lose $1 million. The VaR is generally defined as the point at which a portfolio stands only a one percent chance of taking additional losses.

In other words, the VaR is not quite the worst-case scenario – but it is close. The smaller a company's VaR, the less risk a portfolio is exposed to. If a company's portfolio is valued at $1 billion, for example, a VaR of $15 million is significantly less risky than a VaR of $25 million.

The NC State study indicates that regulators could use additional tests to detect when the models used by banks are failing to accurately assess the statistical probability of losses in financial markets. The good news, Pelletier says, is that the models banks use tend to be overly conservative – meaning they rarely lose more than their VaR. But the bad news is that bank models do not adjust the VaR quickly when the market is in turmoil – meaning that when the banks are wrong and "violate" or lose more than their VaR – they tend to be wrong multiple times in a short period of time.

This could have serious consequences, Pelletier explains. "For example, if a bank has a VaR of $100 million it would keep at least $300 million in reserve, because banks are typically required to keep three to five times the VaR on hand in cash as a capital reserve. So it could afford a bad day – say, $150 million in losses. However, it couldn't afford several really bad days in a row without having to sell illiquid assets, putting the bank further in distress."

Banks are required to calculate their VaR on a daily basis by various regulatory authorities, such as the Federal Deposit Insurance Corporation. Pelletier says the new study indicates that regulatory authorities need to do more to ensure that banks are using dynamic models – and don't face multiple VaR violations in a row.

The study, "Evaluating Value-at-Risk Models with Desk-Level Data," was co-authored by Pelletier, Jeremy Berkowitz of the University of Houston and Peter Christoffersen of McGill University. The study will be published in a forthcoming special issue of Management Science on interfaces of operations and finance.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>