Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Shows Bank Risk-Assessment Tool Not Responding Adequately to Market Fluctuations

A new study from North Carolina State University indicates that regulators need to do more to ensure that banks are adequately computing their Value-at-Risk (VaR) to reflect fluctuations in financial markets.

The study finds that the tests used by regulators do not detect when VaRs inaccurately account for significant swings in the market, which is significant because VaRs are key risk-assessment tools financial institutions use to determine the amount of capital they need to keep on hand to cover potential losses.

"Failing to modify the VaR to reflect market fluctuations is important," study co-author Dr. Denis Pelletier says, "because it could lead to a bank exhausting its on-hand cash reserves." Pelletier, an assistant professor of economics at NC State, says "Problems can come up if banks miscalculate their VaR and have insufficient funds on hand to cover their losses."

VaRs are a way to measure the risk exposure of a company's portfolio. Economists can determine the range of potential future losses and provide a statistical probability for those losses. For example, there may be a 10 percent chance that a company could lose $1 million. The VaR is generally defined as the point at which a portfolio stands only a one percent chance of taking additional losses.

In other words, the VaR is not quite the worst-case scenario – but it is close. The smaller a company's VaR, the less risk a portfolio is exposed to. If a company's portfolio is valued at $1 billion, for example, a VaR of $15 million is significantly less risky than a VaR of $25 million.

The NC State study indicates that regulators could use additional tests to detect when the models used by banks are failing to accurately assess the statistical probability of losses in financial markets. The good news, Pelletier says, is that the models banks use tend to be overly conservative – meaning they rarely lose more than their VaR. But the bad news is that bank models do not adjust the VaR quickly when the market is in turmoil – meaning that when the banks are wrong and "violate" or lose more than their VaR – they tend to be wrong multiple times in a short period of time.

This could have serious consequences, Pelletier explains. "For example, if a bank has a VaR of $100 million it would keep at least $300 million in reserve, because banks are typically required to keep three to five times the VaR on hand in cash as a capital reserve. So it could afford a bad day – say, $150 million in losses. However, it couldn't afford several really bad days in a row without having to sell illiquid assets, putting the bank further in distress."

Banks are required to calculate their VaR on a daily basis by various regulatory authorities, such as the Federal Deposit Insurance Corporation. Pelletier says the new study indicates that regulatory authorities need to do more to ensure that banks are using dynamic models – and don't face multiple VaR violations in a row.

The study, "Evaluating Value-at-Risk Models with Desk-Level Data," was co-authored by Pelletier, Jeremy Berkowitz of the University of Houston and Peter Christoffersen of McGill University. The study will be published in a forthcoming special issue of Management Science on interfaces of operations and finance.

Matt Shipman | EurekAlert!
Further information:

More articles from Business and Finance:

nachricht Blockchain Set to Transform the Financial Services Market
28.09.2016 | HHL Leipzig Graduate School of Management

nachricht Paper or plastic?
08.07.2016 | University of Toronto

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>