Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Bank Risk-Assessment Tool Not Responding Adequately to Market Fluctuations

27.05.2009
A new study from North Carolina State University indicates that regulators need to do more to ensure that banks are adequately computing their Value-at-Risk (VaR) to reflect fluctuations in financial markets.

The study finds that the tests used by regulators do not detect when VaRs inaccurately account for significant swings in the market, which is significant because VaRs are key risk-assessment tools financial institutions use to determine the amount of capital they need to keep on hand to cover potential losses.

"Failing to modify the VaR to reflect market fluctuations is important," study co-author Dr. Denis Pelletier says, "because it could lead to a bank exhausting its on-hand cash reserves." Pelletier, an assistant professor of economics at NC State, says "Problems can come up if banks miscalculate their VaR and have insufficient funds on hand to cover their losses."

VaRs are a way to measure the risk exposure of a company's portfolio. Economists can determine the range of potential future losses and provide a statistical probability for those losses. For example, there may be a 10 percent chance that a company could lose $1 million. The VaR is generally defined as the point at which a portfolio stands only a one percent chance of taking additional losses.

In other words, the VaR is not quite the worst-case scenario – but it is close. The smaller a company's VaR, the less risk a portfolio is exposed to. If a company's portfolio is valued at $1 billion, for example, a VaR of $15 million is significantly less risky than a VaR of $25 million.

The NC State study indicates that regulators could use additional tests to detect when the models used by banks are failing to accurately assess the statistical probability of losses in financial markets. The good news, Pelletier says, is that the models banks use tend to be overly conservative – meaning they rarely lose more than their VaR. But the bad news is that bank models do not adjust the VaR quickly when the market is in turmoil – meaning that when the banks are wrong and "violate" or lose more than their VaR – they tend to be wrong multiple times in a short period of time.

This could have serious consequences, Pelletier explains. "For example, if a bank has a VaR of $100 million it would keep at least $300 million in reserve, because banks are typically required to keep three to five times the VaR on hand in cash as a capital reserve. So it could afford a bad day – say, $150 million in losses. However, it couldn't afford several really bad days in a row without having to sell illiquid assets, putting the bank further in distress."

Banks are required to calculate their VaR on a daily basis by various regulatory authorities, such as the Federal Deposit Insurance Corporation. Pelletier says the new study indicates that regulatory authorities need to do more to ensure that banks are using dynamic models – and don't face multiple VaR violations in a row.

The study, "Evaluating Value-at-Risk Models with Desk-Level Data," was co-authored by Pelletier, Jeremy Berkowitz of the University of Houston and Peter Christoffersen of McGill University. The study will be published in a forthcoming special issue of Management Science on interfaces of operations and finance.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Business and Finance:

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>