Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research proves there is power in numbers to reduce electricity bills

31.07.2014

Consumers can save money on their electricity bills and negotiate better deals by joining forces

Consumers can save money on their electricity bills and negotiate better deals by joining forces with similar groups of customers to switch energy suppliers according to new research.

Collective switching or group buying schemes, where thousands of consumers join forces to negotiate cheaper electricity tariffs, are becoming more popular in the UK as bills continue to rise putting increasing pressure on household budgets. Initiatives like Which?'s Big Switch, People Power or the Big Deal have helped thousands of consumers to save, on average, up to a third of their yearly electricity bills.

Now research from Heriot-Watt University and the University of Southampton proves these schemes work and proposes a model to help consumers form more efficient buying groups and minimize switching risks.

A common problem with existing schemes is that one tariff may not be efficient for every consumer. Often they may have been financially better off not switching, or as the research now shows creating a new sub-group which chooses a different tariff.

Speaking at the AAAI Artificial Intelligence conference in Canada this week Dr. Valentin Robu from Heriot-Watt University explains, "Electricity suppliers buy from the wholesale market where electricity prices are considerably lower. There are a number of ways they sell this onto consumers but typically they predict the amount of electricity required and pass on premium prices to consumers to cover any risk associated with over or under buying, allowing them to make profits.

"Crucially, this is where group buying is important. While everyone has potentially some uncertainty about their future consumption, our work shows that, by grouping together, consumers can gain size and market power and reduce their risk and access better prices."

In the new group buying models consumers start with a 'prediction-of-use tariff' which predicts their future consumption using their past data. Based on these patterns, they can then choose to join one of many different types of buyer groups with different tariffs, ranging from:

  • Unpredictable: best suited to a flat tariff, which is identical to existing flat rate supplier tariffs, in which they just pay per unit consumed, irrespective of their prediction
  • Predictable: best suited to a structured tariff where they pay less per unit of power predicted in advance but a higher penalty for over or under consumption

The research has been tested using consumption data from 3,000 UK domestic consumers and techniques from the fields of artificial intelligence and coalition theory to help find the best solution for each household.

Dr. Robu added, "While we now know how to efficiently form buyer groups to reduce each customer's electricity bill, previous research and practice shows customers are often reluctant to switch providers. Even if we can calculate what the most efficient decision would be consumers worry about loss of convenience and uncertainty of the future benefits.

"Our next challenge is to design smarter systems that not only propose the efficient tariff groups, but also "nudge" people towards making the optimal choice for them."

The ultimate aim of the research is to use artificial intelligence to design tools that enable consumers to choose their optimal tariff and allow them to identify other consumers to group with that have an efficient match in terms of their consumption patterns.

###

For more information please contact:

Lynne Veitch
0131 556 0770 or email Lynne.veitch@pagodapr.com

Notes for editors

  • Technical note: The research was performed in collaboration with Dr. Meritxell Vinyals (currently at CEA, the French Centre for Alternative Energies and Atomic Energy in Paris) and Professors Alex Rogers and Nicholas R. Jennings from The University of Southampton. The paper is presented at AAAI, the 28th International Conference for the Advancement of Artificial Intelligence, held in Quebec, Canada. An authors' pre-print of the full paper is available at: http://eprints.soton.ac.uk/364307/ 
  • Collective switching / group buying schemes emerged in Europe, particularly in Belgium and the Netherlands. In the UK the Big Switch estimated an average saving of around £233 per year, while Big Deal estimated £291 per year. 
  • While there is no minimum number to create a collective switching group for the uncertainty reduction effects to be reasonable and to negotiate the best tariffs around 3,000 would be needed to make a scheme viable. The Big Switch attracted 37,000, while the BigDeal attracted 10,000.

About Heriot-Watt University

Heriot-Watt University specialises in science, technology, engineering, business and design, with a particular focus on developing solutions to critical global issues, such as climate change and energy.

Established in 1821, the university has campuses in Edinburgh, the Scottish Borders, Orkney and Dubai, and is investing £35 million in a new campus in Malaysia. http://www.hw.ac.uk

Lynne Veitch | Eurek Alert!

Further reports about: Conference Intelligence Switch artificial electricity techniques

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>