Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Could Boost Coastal Economics with Crustacean Molting on Demand

29.10.2009
University of Alabama at Birmingham (UAB) researchers are close to unraveling intricate cellular pathways that control molting in blue crabs. The discoveries could revolutionize the soft-shell crab industry, generating new jobs and additional profits for the U.S. fishing industry along the coastal Southeast.

Soft-shelled blue crabs are a delicacy enjoyed by food lovers each spring and early summer when the crustaceans naturally molt their hard outer shell in the wild. Molting is the process by which the crab discards its exoskeleton, replacing it with a temporarily soft, pliable new exoskeleton that is easy to eat.

Despite being limited by the crab’s annual molting patterns, the blue crab fishing industry is valued at nearly $50 million a year in Alabama, Florida, Mississippi, Louisiana and Texas. The ability to manipulate molting, or facilitate molting on demand, could make the blue crab available to consumers year-round, potentially boosting the industry’s overall economic impact.

UAB biologist and researcher Doug Watson, Ph.D., and his research team believe they have identified the blue crab molt-inhibiting hormone (MIH) receptor, a key protein in the cellular pathway that controls molting. They are testing a compound designed to block the MIH receptor in the hopes of inducing molting.

“No one yet has isolated or characterized this MIH receptor for any crustacean, but we think we have isolated a gene that codes for that receptor,” Watson says. “We’re not 100 percent sure yet, but the gene we have cloned has all the characteristics of the MIH receptor. We’re trying to determine for sure if it is.”

Conceivably, then the growth of the animals could be controlled, and this could create jobs and stimulate local economies through private aquaculture or farming operations across every state touching the ocean – from Texas to Maryland, Watson says.

“Induced molting probably would have to take place in an aquaculture setting because it would be difficult to control in the wild,” Watson says. “Once the blue crabs molt in the wild they are very vulnerable to predators because their shell is so soft.”

The identification and characterization of the MIH receptor also would constitute a significant contribution to the field of invertebrate endocrinology.

“That’s the basic science and a key to answering the question of how growth and development are regulated in this group of organisms with so much ecological and economical importance,” Watson says.

Watson says they will either need to develop an injection or food pellet that could be used to induce the molting process.

Watson’s research is being conducted through a two-year grant funded by the Mississippi-Alabama Sea Grant Consortium and a pilot grant from the Center for Biophysical Sciences and Engineering at UAB. His research team includes colleagues Teruaki Nakatsuji, Junying Zheng and current UAB graduate students Hsiang-Yin Chen and Anna Pendleton.

About the UAB Department of Biology

The UAB Department of Biology is a dynamic academic partnership that provides a broad-based graduate and undergraduate curriculum. Most members of the graduate faculty have research specialties in comparative biochemistry, physiology and eco-physiology of aquatic organisms. A second, important department research focus is environmental microbiology.

The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all consecutive references.

Andrew Hayenga | Newswise Science News
Further information:
http://www.uab.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>