Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tool aids cost estimates for complex projects

26.09.2006
Consider the following scenario: A project manager at a major aerospace company is about to bid on the development of a new air fighter for the U.S. Air Force.

The bid must bring the project in on time, on budget and meet all the government's requirements. If the bid is too low, the project will miss these markers; too high and the company will be seen as wasteful or inefficient and may disqualify itself from the competition.

Now a new, first-of-its-kind systems engineering cost-estimation model developed by an MIT researcher can ensure that the bid is right on target, which means project risk (and costs) can be reduced. The model allows companies and organizations to develop more accurate bid proposals, thereby eliminating excess "cost overrun" padding that is often built into these proposals.

The Constructive Systems Engineering Cost Model (COSYSMO), now available commercially, helps eliminate the guessing game played by many large corporations in planning and executing large systems in many different industries. It also helps government agencies evaluate proposals from contractors with a more objective approach.

"In the past, a program manager would look at an earlier aircraft program and estimate by analogy, but now we can go beyond that and use parametrics to go beneath the surface to the underlying reasons why a certain aircraft costs what it does to develop," said Ricardo Valerdi, a researcher at MIT's Lean Aerospace Initiative (LAI) who developed the new model.

Validated with assistance and historical data from seven major aerospace companies, COSYSMO can be adapted to systems engineering programs in many different industries.

"The inputs to the COSYSMO model are generic, they are not domain specific, so it could be used in estimating effort associated with waste management systems or building new highway tunnels in Boston," said Valerdi.

Systems engineering is an interdisciplinary approach to creating successful systems by focusing on variables including customer needs, system requirements, design synthesis and system validation all while considering the complete problem.

Others have developed cost-estimation models for computer hardware and software development, but until now no models have been created to estimate the costs associated with systems engineering.

Computer hardware and software cost-estimation tools help companies estimate costs specifically associated with developing and designing computer hardware and software components and platforms. The costs associated with systems engineering are more difficult to estimate because the discipline deals with multiple factors in the big picture such as system design and customer needs.

COSYSMO helps companies estimate "person-months" specifically associated with a systems engineering effort and costs -- such as how many people it will take to develop a command and control system in an aircraft and meet all the customer requirements.

According to Valerdi, the failure to adequately plan and fund systems engineering efforts appears to have contributed to a number of cost overruns and schedule slips, especially in the development of complex aerospace systems.

In addition to its availability via commercial channels, the academic version of COSYSMO and its new user's manual are both available to members of the LAI Consortium. Many of the consortium members, including BAE Systems, Northrop Grumman, Lockheed Martin, Raytheon and L-3 Communications, participated in the validation of COSYSMO.

Three corporations now offer COSYSMO commercially: Price Systems, Galorath and Softstar Systems.

Michelle Gaseau, | MIT News Office
Further information:
http://www.mit.edu

More articles from Business and Finance:

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>