Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tool aids cost estimates for complex projects

26.09.2006
Consider the following scenario: A project manager at a major aerospace company is about to bid on the development of a new air fighter for the U.S. Air Force.

The bid must bring the project in on time, on budget and meet all the government's requirements. If the bid is too low, the project will miss these markers; too high and the company will be seen as wasteful or inefficient and may disqualify itself from the competition.

Now a new, first-of-its-kind systems engineering cost-estimation model developed by an MIT researcher can ensure that the bid is right on target, which means project risk (and costs) can be reduced. The model allows companies and organizations to develop more accurate bid proposals, thereby eliminating excess "cost overrun" padding that is often built into these proposals.

The Constructive Systems Engineering Cost Model (COSYSMO), now available commercially, helps eliminate the guessing game played by many large corporations in planning and executing large systems in many different industries. It also helps government agencies evaluate proposals from contractors with a more objective approach.

"In the past, a program manager would look at an earlier aircraft program and estimate by analogy, but now we can go beyond that and use parametrics to go beneath the surface to the underlying reasons why a certain aircraft costs what it does to develop," said Ricardo Valerdi, a researcher at MIT's Lean Aerospace Initiative (LAI) who developed the new model.

Validated with assistance and historical data from seven major aerospace companies, COSYSMO can be adapted to systems engineering programs in many different industries.

"The inputs to the COSYSMO model are generic, they are not domain specific, so it could be used in estimating effort associated with waste management systems or building new highway tunnels in Boston," said Valerdi.

Systems engineering is an interdisciplinary approach to creating successful systems by focusing on variables including customer needs, system requirements, design synthesis and system validation all while considering the complete problem.

Others have developed cost-estimation models for computer hardware and software development, but until now no models have been created to estimate the costs associated with systems engineering.

Computer hardware and software cost-estimation tools help companies estimate costs specifically associated with developing and designing computer hardware and software components and platforms. The costs associated with systems engineering are more difficult to estimate because the discipline deals with multiple factors in the big picture such as system design and customer needs.

COSYSMO helps companies estimate "person-months" specifically associated with a systems engineering effort and costs -- such as how many people it will take to develop a command and control system in an aircraft and meet all the customer requirements.

According to Valerdi, the failure to adequately plan and fund systems engineering efforts appears to have contributed to a number of cost overruns and schedule slips, especially in the development of complex aerospace systems.

In addition to its availability via commercial channels, the academic version of COSYSMO and its new user's manual are both available to members of the LAI Consortium. Many of the consortium members, including BAE Systems, Northrop Grumman, Lockheed Martin, Raytheon and L-3 Communications, participated in the validation of COSYSMO.

Three corporations now offer COSYSMO commercially: Price Systems, Galorath and Softstar Systems.

Michelle Gaseau, | MIT News Office
Further information:
http://www.mit.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>