Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Mist Reduces Airborne Hazards in Concentrated Swine Feeding Operation

29.11.2005


A specially developed oil mixture reduced airborne levels of particulate matter at a concentrated animal feeding operation (CAFO) in a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. The researchers evaluated an oil spray developed to reduce the airborne health hazards at industrial feeding facilities. Chronic respiratory illnesses are a serious concern for CAFO workers, as well as for the surrounding communities and animals themselves. The study, published in the current online edition of Environmental, Science and Technology, measured indoor air pollution in a mid-Atlantic swine facility. It found ten-fold reductions in the amounts of dust and bacteria in a barn where the spray was used compared with an identical barn where no spray was used. In contrast, however, the oil spray did not impact levels of ammonia, another pollutant generated from CAFO facilities.



“From the perspective of worker and community health, this is a step in the right direction,” said Ana Rule, the study’s lead author and a doctoral candidate at the Bloomberg School’s Department of Environmental Health Sciences. “This technology addresses only a portion of the hazards workers and communities face from concentrated animal feeding facilities.”

Rule explained there is growing interest in technologies that improve indoor air quality and control emissions to reduce the public health and environmental risks associated with raising large numbers of animals in confined spaces. In addition to particulate matter and ammonia, recent studies have shown that concentrated feeding operations also produce antibiotic-resistant pathogens. The oil spray technology provides animal producers with a tool to reduce some air pollution hazards to workers and neighbors, and help them comply with local, state and federal air pollution regulations. Although substantial improvement in barn air quality was achieved in the Hopkins study, questions remain as to whether it is enough to protect public health.


“We need to continue our collaboration with the private developers of these products to not only improve their efficacy, but to also demonstrate their utility in other agricultural operations, including poultry and dairy,” said the study’s senior author Timothy J. Buckley, PhD, a former associate professor at the Bloomberg School who now chairs the Division of Environmental Health Sciences at the Ohio State University School of Public Health. “These results are encouraging, but much work remains to be done.”

Rule, A. Chapin, S.A. McCarthy, K.E. Gibson, K.J. Schwab and T.J. Buckley, co-authored the study, "Assessment of an Aerosol Treatment To Improve Air Quality in a Swine Concentrated Animal Feeding Operation (CAFO)."

The study was supported by the NIOSH Education and Research Center for Occupational Safety and Health and theCenter for a Livable Future, both at the Johns Hopkins Bloomberg School of Public Health.

Media contact for the Johns Hopkins Center for a Livable Future: Donna Mennitto at 410-502-2317 or dmennitt@jhsph.edu.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>