Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Mist Reduces Airborne Hazards in Concentrated Swine Feeding Operation

29.11.2005


A specially developed oil mixture reduced airborne levels of particulate matter at a concentrated animal feeding operation (CAFO) in a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. The researchers evaluated an oil spray developed to reduce the airborne health hazards at industrial feeding facilities. Chronic respiratory illnesses are a serious concern for CAFO workers, as well as for the surrounding communities and animals themselves. The study, published in the current online edition of Environmental, Science and Technology, measured indoor air pollution in a mid-Atlantic swine facility. It found ten-fold reductions in the amounts of dust and bacteria in a barn where the spray was used compared with an identical barn where no spray was used. In contrast, however, the oil spray did not impact levels of ammonia, another pollutant generated from CAFO facilities.



“From the perspective of worker and community health, this is a step in the right direction,” said Ana Rule, the study’s lead author and a doctoral candidate at the Bloomberg School’s Department of Environmental Health Sciences. “This technology addresses only a portion of the hazards workers and communities face from concentrated animal feeding facilities.”

Rule explained there is growing interest in technologies that improve indoor air quality and control emissions to reduce the public health and environmental risks associated with raising large numbers of animals in confined spaces. In addition to particulate matter and ammonia, recent studies have shown that concentrated feeding operations also produce antibiotic-resistant pathogens. The oil spray technology provides animal producers with a tool to reduce some air pollution hazards to workers and neighbors, and help them comply with local, state and federal air pollution regulations. Although substantial improvement in barn air quality was achieved in the Hopkins study, questions remain as to whether it is enough to protect public health.


“We need to continue our collaboration with the private developers of these products to not only improve their efficacy, but to also demonstrate their utility in other agricultural operations, including poultry and dairy,” said the study’s senior author Timothy J. Buckley, PhD, a former associate professor at the Bloomberg School who now chairs the Division of Environmental Health Sciences at the Ohio State University School of Public Health. “These results are encouraging, but much work remains to be done.”

Rule, A. Chapin, S.A. McCarthy, K.E. Gibson, K.J. Schwab and T.J. Buckley, co-authored the study, "Assessment of an Aerosol Treatment To Improve Air Quality in a Swine Concentrated Animal Feeding Operation (CAFO)."

The study was supported by the NIOSH Education and Research Center for Occupational Safety and Health and theCenter for a Livable Future, both at the Johns Hopkins Bloomberg School of Public Health.

Media contact for the Johns Hopkins Center for a Livable Future: Donna Mennitto at 410-502-2317 or dmennitt@jhsph.edu.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Business and Finance:

nachricht Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

nachricht RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>