Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian countries gain prominence in science and technology as US loses ground

15.03.2005


The global landscape for science and technology is changing, with increased competition for resources and recognition. That’s beginning to look like bad news for the innovative edge the United States has long enjoyed.




"Will the United States own the technology of the future? Probably not all of it, and only if we compete harder to maintain our current position," said Diana Hicks, professor and chair of Georgia Institute of Technology’s School of Public Policy.

Many foreign governments have been strengthening their educational and research programs, she explained. As a result, the gap is closing between the United States and its overseas competitors, with Asian countries – China, South Korea, Japan, Taiwan, Singapore and India -- showing particular gains.


Hicks will discuss trends in Asian research and development and their impact on U.S. education and industry on March 14 at the American Chemical Society’s 229th national meeting in San Diego, Calif. Speaking at the symposium "Chemistry Enterprise 2015: Where in the World Will We Be? The Big Picture," Hicks will present a number of benchmarks that raise concern for the United States. Bigger talent pool: The number of researchers in Asia has grown rapidly as more Asians, especially the Chinese, earn doctoral degrees. At the same time, the number of U.S. citizens pursuing doctoral degrees has been decreasing.

In addition, the number of Asian students who study for doctoral degrees in the United States dropped 19 percent in just four years, 1994 to 1998. That’s disturbing because those students had helped make up for the dearth of U.S.-born students enrolled in science and engineering, Hicks explained. Foreign students often remain in the United States for research jobs, contributing to the nation’s knowledge base.

Increased R&D spending: From 1995 through 2001, China, South Korea and Taiwan increased gross R&D spending by about 140 percent, while the United States increased its investments by only 34 percent.

Another disturbing signpost: 68 percent of all domestic R&D money in the United States now comes from the private sector. Nearly three-fourths of this money goes toward development instead of basic research (in which researchers try to gain greater knowledge of a subject without specific applications in mind).

"Basic research is important because it sets up the country for the next generation of technology so we don’t run out of innovations," Hicks said. "Funding basic research is the role of the public sector, and yet federal spending for basic research in engineering and the physical sciences has shown little or no growth in the last 30 years."

Patent growth: Since 1988, the number of U.S. patent applications for innovations originating in Asia increased 789 percent, with South Korea evidencing especially strong gains. In contrast, U.S. patent applications for homegrown technology grew more slowly at a rate of 116 percent.

Published papers: The United States’ share of science and engineering papers published worldwide fell from 38 percent in 1988 to 31 percent in 2001, while European and Asian papers have been on the upswing. In fact, Western Europe, which evidenced a 36 percent share in 2001, now one-ups the United States. During the 1988-2001 period, Asia’s share of published papers grew from 11 to 17 percent.

Although scientific papers don’t always have immediate commercial applications, they remain an important measure of our knowledge base, Hicks said. "It’s a sign that you have highly skilled people who are producing the necessary knowledge for later applications," she added.

When it comes to collaborating on papers for scientific journals, the United States traditionally has been the go-to country. Yet Asian countries are beginning to collaborate more among themselves. "This makes the United States appear slightly less important – another sign that our dominance is starting to decline," Hicks said.

Granted, these benchmarks are relative, reflecting percentage growth rather than absolute numbers. Yet in the late 1990s, the actual number of published papers from U.S. researchers also began to wane, which is startling, Hicks said.

"The number of pages in journals like Nature or Science can only grow so fast," she explained. "If Asian and European nations increase their scientific capability faster, they crowd out some of our efforts, which reduces the perceived achievement of younger U.S. scientists. Although U.S. researchers will work far harder than previous generations, they will not command the same dominating position in world science as did their predecessors."

A member of the Task Force on the Future of American Innovation, Hicks spoke recently in Washington, D.C., where the coalition of business and academic leaders called for increased federal spending for basic research. She will make another presentation in Washington on April 5 at the 3rd annual Engineering R&D Symposium, sponsored by the United Engineering Foundation and several other industry groups.

"In contrast to natural disasters like the recent tsunami, this is a slow-developing trend, and one that’s hard to see from inside the United States," Hicks said. "We’re still a very competitive country, but it’s important to look at the long-range implications of these benchmarks. Maintaining our leadership role in science and innovation is critical to economic strength and national security."

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>