# Forum for Science, Industry and Business

Search our Site:

## What does a basket of shares cost? Researcher works it out.

05.06.2008
Dutch researcher Coen Leentvaar has been studying the problem that arises if options have to be priced on a number of shares.

From an arithmetical standpoint, the question introduces so many unknown variables that even a modern computer cannot handle the calculation. As part of a Technology Foundation STW project, Leentvaar split the problem into a number of less complex partial problems. He also developed an algorithm that, combined with computer technology, can calculate the option price for a basket of shares.

Using a computer, it is hard to determine the option price for a variety of shares. The multitude of possibilities mean the number of unknowns to be resolved grows exponentially. For example, an option on a basket of five shares involves 32 million unknowns, given a 32-point grid. This is beyond the capabilities of today’s computer systems. Leentvaar used the so-called thin-grid method to split the problem into a number of less complex partial problems that could be handled by a modern computer system. The option price can be estimated accurately by combining the solutions of all the partial problems in the correct manner.

However, the option contract has one annoying feature if the thin-grid method is used, namely it is not always advantageous to exercise an option (i.e. to exercise the right to buy or sell at a particular time). Mathematically, this leads to a ‘kink’ in the final solution to the problem. Leentvaar used variable transforms to minimise this ‘kink’, so that it is dependent on only one variable: the value of the basket itself. The thin-grid method can be used with reasonable accuracy by calculating this particular variable more precisely and the other variables more coarsely.

This leaves the options based on the worst- or best-performing share. These options do not lend themselves to solution using differential equations because the preconditions are missing. Leentvaar used advanced parallelisation methods (Fourier transforms) for this purpose. By cleverly splitting up the problem, these methods are able to solve each part independently of the rest. In this way, the researcher managed to combine the power of the thin-grid method with the parallelisation of the Fourier transforms into a computer model that divides a large problem into many small parts and then solves these.

Trade in underlying futures, or hedging, is based on derivatives of the option prices. This either cannot be done accurately enough using current methods or there is no reference. Leentvaar’s method is one where the derivatives, or Greeks, can easily be determined on the basis of the calculated prices. This offers the prospect of further research into making pricing methods more efficient. Participating organisations are ABN-AMRO, Rabobank, Binck (formerly AOT) and Tilburg University.

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7F2GP6_Eng

### More articles from Business and Finance:

Microtechnology industry is hiring – positive developments of past years continue
09.04.2018 | IVAM Fachverband für Mikrotechnik

RWI/ISL-Container Throughput Index with minor decline on a high overall level
20.03.2018 | RWI – Leibniz-Institut für Wirtschaftsforschung

### Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

### Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

### Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

### Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

### Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige