Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What does a basket of shares cost? Researcher works it out.

05.06.2008
Dutch researcher Coen Leentvaar has been studying the problem that arises if options have to be priced on a number of shares.

From an arithmetical standpoint, the question introduces so many unknown variables that even a modern computer cannot handle the calculation. As part of a Technology Foundation STW project, Leentvaar split the problem into a number of less complex partial problems. He also developed an algorithm that, combined with computer technology, can calculate the option price for a basket of shares.

Using a computer, it is hard to determine the option price for a variety of shares. The multitude of possibilities mean the number of unknowns to be resolved grows exponentially. For example, an option on a basket of five shares involves 32 million unknowns, given a 32-point grid. This is beyond the capabilities of today’s computer systems. Leentvaar used the so-called thin-grid method to split the problem into a number of less complex partial problems that could be handled by a modern computer system. The option price can be estimated accurately by combining the solutions of all the partial problems in the correct manner.

However, the option contract has one annoying feature if the thin-grid method is used, namely it is not always advantageous to exercise an option (i.e. to exercise the right to buy or sell at a particular time). Mathematically, this leads to a ‘kink’ in the final solution to the problem. Leentvaar used variable transforms to minimise this ‘kink’, so that it is dependent on only one variable: the value of the basket itself. The thin-grid method can be used with reasonable accuracy by calculating this particular variable more precisely and the other variables more coarsely.

This leaves the options based on the worst- or best-performing share. These options do not lend themselves to solution using differential equations because the preconditions are missing. Leentvaar used advanced parallelisation methods (Fourier transforms) for this purpose. By cleverly splitting up the problem, these methods are able to solve each part independently of the rest. In this way, the researcher managed to combine the power of the thin-grid method with the parallelisation of the Fourier transforms into a computer model that divides a large problem into many small parts and then solves these.

Trade in underlying futures, or hedging, is based on derivatives of the option prices. This either cannot be done accurately enough using current methods or there is no reference. Leentvaar’s method is one where the derivatives, or Greeks, can easily be determined on the basis of the calculated prices. This offers the prospect of further research into making pricing methods more efficient. Participating organisations are ABN-AMRO, Rabobank, Binck (formerly AOT) and Tilburg University.

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7F2GP6_Eng

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>