Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What does a basket of shares cost? Researcher works it out.

05.06.2008
Dutch researcher Coen Leentvaar has been studying the problem that arises if options have to be priced on a number of shares.

From an arithmetical standpoint, the question introduces so many unknown variables that even a modern computer cannot handle the calculation. As part of a Technology Foundation STW project, Leentvaar split the problem into a number of less complex partial problems. He also developed an algorithm that, combined with computer technology, can calculate the option price for a basket of shares.

Using a computer, it is hard to determine the option price for a variety of shares. The multitude of possibilities mean the number of unknowns to be resolved grows exponentially. For example, an option on a basket of five shares involves 32 million unknowns, given a 32-point grid. This is beyond the capabilities of today’s computer systems. Leentvaar used the so-called thin-grid method to split the problem into a number of less complex partial problems that could be handled by a modern computer system. The option price can be estimated accurately by combining the solutions of all the partial problems in the correct manner.

However, the option contract has one annoying feature if the thin-grid method is used, namely it is not always advantageous to exercise an option (i.e. to exercise the right to buy or sell at a particular time). Mathematically, this leads to a ‘kink’ in the final solution to the problem. Leentvaar used variable transforms to minimise this ‘kink’, so that it is dependent on only one variable: the value of the basket itself. The thin-grid method can be used with reasonable accuracy by calculating this particular variable more precisely and the other variables more coarsely.

This leaves the options based on the worst- or best-performing share. These options do not lend themselves to solution using differential equations because the preconditions are missing. Leentvaar used advanced parallelisation methods (Fourier transforms) for this purpose. By cleverly splitting up the problem, these methods are able to solve each part independently of the rest. In this way, the researcher managed to combine the power of the thin-grid method with the parallelisation of the Fourier transforms into a computer model that divides a large problem into many small parts and then solves these.

Trade in underlying futures, or hedging, is based on derivatives of the option prices. This either cannot be done accurately enough using current methods or there is no reference. Leentvaar’s method is one where the derivatives, or Greeks, can easily be determined on the basis of the calculated prices. This offers the prospect of further research into making pricing methods more efficient. Participating organisations are ABN-AMRO, Rabobank, Binck (formerly AOT) and Tilburg University.

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7F2GP6_Eng

More articles from Business and Finance:

nachricht Europe's microtechnology industry is attuned to growth
10.03.2017 | IVAM Fachverband für Mikrotechnik

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>