Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What does a basket of shares cost? Researcher works it out.

05.06.2008
Dutch researcher Coen Leentvaar has been studying the problem that arises if options have to be priced on a number of shares.

From an arithmetical standpoint, the question introduces so many unknown variables that even a modern computer cannot handle the calculation. As part of a Technology Foundation STW project, Leentvaar split the problem into a number of less complex partial problems. He also developed an algorithm that, combined with computer technology, can calculate the option price for a basket of shares.

Using a computer, it is hard to determine the option price for a variety of shares. The multitude of possibilities mean the number of unknowns to be resolved grows exponentially. For example, an option on a basket of five shares involves 32 million unknowns, given a 32-point grid. This is beyond the capabilities of today’s computer systems. Leentvaar used the so-called thin-grid method to split the problem into a number of less complex partial problems that could be handled by a modern computer system. The option price can be estimated accurately by combining the solutions of all the partial problems in the correct manner.

However, the option contract has one annoying feature if the thin-grid method is used, namely it is not always advantageous to exercise an option (i.e. to exercise the right to buy or sell at a particular time). Mathematically, this leads to a ‘kink’ in the final solution to the problem. Leentvaar used variable transforms to minimise this ‘kink’, so that it is dependent on only one variable: the value of the basket itself. The thin-grid method can be used with reasonable accuracy by calculating this particular variable more precisely and the other variables more coarsely.

This leaves the options based on the worst- or best-performing share. These options do not lend themselves to solution using differential equations because the preconditions are missing. Leentvaar used advanced parallelisation methods (Fourier transforms) for this purpose. By cleverly splitting up the problem, these methods are able to solve each part independently of the rest. In this way, the researcher managed to combine the power of the thin-grid method with the parallelisation of the Fourier transforms into a computer model that divides a large problem into many small parts and then solves these.

Trade in underlying futures, or hedging, is based on derivatives of the option prices. This either cannot be done accurately enough using current methods or there is no reference. Leentvaar’s method is one where the derivatives, or Greeks, can easily be determined on the basis of the calculated prices. This offers the prospect of further research into making pricing methods more efficient. Participating organisations are ABN-AMRO, Rabobank, Binck (formerly AOT) and Tilburg University.

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7F2GP6_Eng

More articles from Business and Finance:

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

nachricht Demographic change depresses tax revenues
04.11.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>