Programmed death boosts business

Palmira López-Fresno of “STIGA” in Barcelona is working with Fernando Fernández-González of the Hospital Central de Asturias in Oviedo to demonstrate how a process analogous to apoptosis, or programmed cell death, could help companies, and organisations, such as hospitals, removed malfunctioning or ineffective parts of their business and operations and so prevent the spread of commercial decay that could spread throughout an organisation and lead ultimately to its demise.

Programmed cell death, known in biological circles as apoptosis, is a natural process in which damaged, diseased, or otherwise unwanted cells are stimulated to undergo spontaneous self destruction. Apoptosis is a very useful process. Under normal conditions, it models the foetus, allowing growing fingers to separate for form tiny hands, for instance. Apoptosis also allows the body to eradicate errant cells that could be destructive if left to their own devices. It also keeps cell replication in check and prevents the kind of runaway cell replication that would otherwise lead to cancer.

López-Fresno and Fernández-González explain that Business Process Reengineering (BPR) has become a fashionable and effective approach to increasing productivity through reduced process time and cost, improved quality, and greater customer satisfaction. The core emphasis of BPR is the fundamental rethinking and radical redesign of business process to achieve dramatic improvements in critical areas, they say.

However, BPR is not a panacea. The researchers add that implementing BPR is not only complex but does not guarantee good results, unless both success and failure factors are taken into account. They point out that if an organisation overlooks localised failures within, then lack of motivation, loss of credibility, financial breakdown, and other issues can spread like diseased tissue cause widespread problems and ultimately kill a business.

To stop the rot, López-Fresno and Fernández-González suggest that business adopt apoptosis as a standard procedure within the organisation. Improvements and self-protective systems can be introduced, which they refer to as “structured and virtual mechanisms”. These are embedded into each part or process within the organisation and will trigger at a specific moment, when conditions approach a tipping point, the programmed removal of that particular part or process. The assessment of a negative tipping point is based on ongoing risk assessment and validation of productivity as well as other factors. The result will be the localised programmed death of only the malfunctioning part or process.

As components processes, units, departments lose relevance and efficacy then an approach based on the biological principle of apoptosis means self-sacrifice for specific parts of the business, which may cut to the core of those people involved, but will protect the organisation as a whole and could even save its life.

Media Contact

Albert Ang alfa

More Information:

http://www.inderscience.com

All latest news from the category: Business and Finance

This area provides up-to-date and interesting developments from the world of business, economics and finance.

A wealth of information is available on topics ranging from stock markets, consumer climate, labor market policies, bond markets, foreign trade and interest rate trends to stock exchange news and economic forecasts.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors