Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the distance of processes: RUB researchers develop new process in spectral analysis

28.10.2011
Mathematics: milestone for better statistical models achieved

A milestone in the description of complex processes - for example the ups and downs of share prices - has been reached by mathematicians at the Ruhr-Universität Bochum. Researchers led by Prof. Dr. Holger Dette (stochastics) have developed a new method in spectral analysis, which allows a classical mathematical model assumption, so-called stationarity, to be precisely measured and determined for the first time.


Spectral density of a local and a stationary process – here taking the example of the ECG data of a newborn child (right side). If the assumption of stationarity was fulfilled (left side), the area would not vary in both directions

The approach also makes it possible to construct statistical tests that are considerably better and more accurate than previous methods. The researchers report on their results in the prestigious “Journal of the American Statistical Association”.

Stationary or not stationary - that is the question

Example, share prices: almost all economic models and forecasting tools “suffer” because they are based on a false premise. They assume that the average fluctuation of individual prices and the dependence characteristics between different shares do not change over time. This would make the development of share prices “stationary”. This assumption mostly turns out to be wrong in times of crisis, because, for example, under normal market conditions many prices barely affect each other or not at all, whereas in a crash they almost all collapse together. This proves that such a process is generally non-stationary.

The solution: a new distance dimension

Bochum‘s stochasticians Prof. Dr. Holger Dette, M.Sc. Philip Preuß and Dr. Mathias Vetter, found the key to the whole issue by calculating a distance dimension between the stationary and non-stationary process. “Just as we can determine distances on Earth between two places, we were able to measure the distances or the intervals between the processes” said Prof. Dette. The measure is exactly 0 when the assumption of stationarity applies to the process. This distance can be estimated from the data and thus provides a reliable tool for the spectral analysis of so-called time series, such as share prices or climate data. “The goal of statistical analyses of time series is always to understand the underlying dependencies in order to then deliver the most accurate predictions possible for the future behaviour of these processes” said Prof. Dette.

Motivated by the financial crises

“Our research is strongly motivated by the recent financial crises. At that time, nearly all economic models and forecasts for loan losses failed because they do not take appropriate account of extreme dependencies. In the long term, we aim to develop models and methods that predict such events better” said Dette. New methods of asymptotic statistics are crucial to this success and have been researched for years by Bochum’s mathematicians, funded by the German Research Foundation in the Collaborative Research Centre SFB 823 “Statistical modelling of nonlinear dynamic processes” (Host university: TU Dortmund University). Here, statisticians from Bochum work together with colleagues from the TU Dortmund University on new statistical methods to statistically verify frequently used model assumptions and develop new and better models where appropriate.

Bibliographic record

Holger Dette, Philip Preuß, Mathias Vetter. A Measure of Stationarity in Locally Stationary Processes With Applications to Testing. Journal of the American Statistical Association Sep 2011, Vol. 106, No. 495, 1113-1124. doi:10.1198/jasa.2011.tm10811

Further information

Prof. Dr. Holger Dette, Institute of Statistics, Faculty of Mathematics at the RUB, Tel. +49 234 32 28284, holger.dette@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Business and Finance:

nachricht Europe's microtechnology industry is attuned to growth
10.03.2017 | IVAM Fachverband für Mikrotechnik

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>