Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building small: In many industries, economies of size is shifting to economies of numbers

05.11.2012
For decades, "bigger is better" has been the conventional path to efficiency in industries ranging from transportation to power generation.

Food once grown on small family plots now comes overwhelmingly from factory farms. Vessels that carried 2,000 tons of cargo have been replaced by modern container ships that routinely move 150,000 tons. But now, new research shows, we are on the cusp of a radical shift from building big to building small—a change that has profound implications for both established and emerging industries.

Many industry sectors are nearing or have reached a tipping point in which efficiency of unit size is being replaced by efficiency of numbers, according to a recent study by Garrett van Ryzin, the Paul M. Montrone Professor of Private Enterprise at Columbia Business School, Caner Göçmen, Ph.D. candidate at Columbia Business School, and Eric Dahlgren and Klaus S. Lackner of Columbia University's School of Engineering and Applied Science. Rather than relying on custom-built, large-scale units of production – e.g. massive thermal power plants - industries can benefit from a shift to small, modular, mass-produced units that can be deployed in a single location or distributed across many locations – e.g. photovoltaic (PV) panels mounted on utility poles.

Conventional wisdom holds that capital cost per unit of capacity decline with increasing unit size. Other efficiencies of unit size arise from manufacturers' ability to spread out the fixed-costs components of production, as well as factors such as operator labor and design costs. This alternative approach to infrastructure design offers new possibilities for reducing costs and improving service, the researchers found.

The authors identify three driving forces underlying this shift. First, new computing, sensor, and communication technologies make high degrees of automation possible at a very low cost, largely eliminating the labor savings from large units. Second, mass production of many small, standardized units can achieve capital cost savings comparable to or even greater than those achievable through large unit scale. And third, small-unit scale technology provides significant flexibility—a benefit that has been largely ignored in the race toward ever-increasing scale and one which can significantly reduce both investment and operating costs.

This trend—observable in nascent form in several industries ranging from small, modular nuclear reactors, chlorine plants, and biomass energy systems to data centers—is resulting in a switch from large to small optimal unit scale, the authors found. The shift mirrors a similar revolution that began thirty years ago in the supercomputer industry. The traditional approach to producing higher capacity and greater speed in computing was to build increasingly powerful, specialized machines with ever-increasing processing power. This came to a halt in the mid-1990s, when it became cheaper to employ mass-produced processors and high-capacity memory from the burgeoning personal computer industry. Soon, the researchers conclude, many more industries will learn to "think small" and thereby reap the benefits of this new paradigm in production.

About Columbia Business School

Led by Dean Glenn Hubbard, the Russell L. Carson Professor of Finance and Economics, Columbia Business School is at the forefront of management education for a rapidly changing world. The school's cutting-edge curriculum bridges academic theory and practice, equipping students with an entrepreneurial mindset to recognize and capture opportunity in a competitive business environment. Beyond academic rigor and teaching excellence, the school offers programs that are designed to give students practical experience making decisions in real-world environments. The school offers MBA and Executive MBA (EMBA) degrees, as well as non-degree Executive Education programs. For more information, visit www.gsb.columbia.edu.

Evan Nowell | EurekAlert!
Further information:
http://www.columbia.edu
http://www.gsb.columbia.edu

More articles from Business and Finance:

nachricht Corporate coworking as a driver of innovation
22.11.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>