Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building small: In many industries, economies of size is shifting to economies of numbers

05.11.2012
For decades, "bigger is better" has been the conventional path to efficiency in industries ranging from transportation to power generation.

Food once grown on small family plots now comes overwhelmingly from factory farms. Vessels that carried 2,000 tons of cargo have been replaced by modern container ships that routinely move 150,000 tons. But now, new research shows, we are on the cusp of a radical shift from building big to building small—a change that has profound implications for both established and emerging industries.

Many industry sectors are nearing or have reached a tipping point in which efficiency of unit size is being replaced by efficiency of numbers, according to a recent study by Garrett van Ryzin, the Paul M. Montrone Professor of Private Enterprise at Columbia Business School, Caner Göçmen, Ph.D. candidate at Columbia Business School, and Eric Dahlgren and Klaus S. Lackner of Columbia University's School of Engineering and Applied Science. Rather than relying on custom-built, large-scale units of production – e.g. massive thermal power plants - industries can benefit from a shift to small, modular, mass-produced units that can be deployed in a single location or distributed across many locations – e.g. photovoltaic (PV) panels mounted on utility poles.

Conventional wisdom holds that capital cost per unit of capacity decline with increasing unit size. Other efficiencies of unit size arise from manufacturers' ability to spread out the fixed-costs components of production, as well as factors such as operator labor and design costs. This alternative approach to infrastructure design offers new possibilities for reducing costs and improving service, the researchers found.

The authors identify three driving forces underlying this shift. First, new computing, sensor, and communication technologies make high degrees of automation possible at a very low cost, largely eliminating the labor savings from large units. Second, mass production of many small, standardized units can achieve capital cost savings comparable to or even greater than those achievable through large unit scale. And third, small-unit scale technology provides significant flexibility—a benefit that has been largely ignored in the race toward ever-increasing scale and one which can significantly reduce both investment and operating costs.

This trend—observable in nascent form in several industries ranging from small, modular nuclear reactors, chlorine plants, and biomass energy systems to data centers—is resulting in a switch from large to small optimal unit scale, the authors found. The shift mirrors a similar revolution that began thirty years ago in the supercomputer industry. The traditional approach to producing higher capacity and greater speed in computing was to build increasingly powerful, specialized machines with ever-increasing processing power. This came to a halt in the mid-1990s, when it became cheaper to employ mass-produced processors and high-capacity memory from the burgeoning personal computer industry. Soon, the researchers conclude, many more industries will learn to "think small" and thereby reap the benefits of this new paradigm in production.

About Columbia Business School

Led by Dean Glenn Hubbard, the Russell L. Carson Professor of Finance and Economics, Columbia Business School is at the forefront of management education for a rapidly changing world. The school's cutting-edge curriculum bridges academic theory and practice, equipping students with an entrepreneurial mindset to recognize and capture opportunity in a competitive business environment. Beyond academic rigor and teaching excellence, the school offers programs that are designed to give students practical experience making decisions in real-world environments. The school offers MBA and Executive MBA (EMBA) degrees, as well as non-degree Executive Education programs. For more information, visit www.gsb.columbia.edu.

Evan Nowell | EurekAlert!
Further information:
http://www.columbia.edu
http://www.gsb.columbia.edu

More articles from Business and Finance:

nachricht Preferential trade agreements enhance global trade at the expense of its resilience
17.02.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht How Strong Brands Translate into Money
15.11.2016 | Kühne Logistics University - Wissenschaftliche Hochschule für Logistik und Unternehmensführung

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>