Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blueprint of a trend: How does a financial bubble burst?

03.05.2011
A joint study by academics in Switzerland, Germany and at Boston University sheds new light on the formation of financial bubbles and crashes

A joint study by academics in Switzerland, Germany and at Boston University sheds new light on the formation of financial bubbles and crashes. Wild fluctuations in stock prices caused by bubbles bursting have had a dramatic impact on the world economy and the personal fortunes of millions of us in the last few years.

The study "Switching processes in financial markets" will be published in the Proceedings of the National Academy of Sciences on May 10 and reveals a general empirical law quantifying market behavior near bubbles and crashes—these are either price lows where the share price falls before starting to rise again or price highs where the price peaks before falling.

"We asked whether or not there are regularities either just before or just after market highs and lows", says lead researcher Dr. Tobias Preis of the Swiss Federal Institute of Technology in Zurich, who specializes in analyzing and modeling financial markets. Preis is also at the Center for Polymer Studies at Boston University.

This study involved synchronizing more than 2.6 billion transactions which occurred at the European Exchange (EUREX) in Germany and at the New York Stock Exchange (NYSE) in the U.S. Preis and his fellow authors Dr. Johannes J. Schneider at the Johannes Gutenberg University Mainz and Prof. H. Eugene Stanley, also at Boston University, analyzed microtrends and macrotrends in financial markets using three fluctuating quantities: the price of each transaction, the transaction volume, and the time between individual transactions.

"We applied our methodology to local highs and local lows in the price on very different time scales ranging from milliseconds to 100 days," says Stanley. What the researchers find is that there is a unique empirical law near bubbles and crashes, or trend changes quantifying both transaction volume and time between transactions in all the financial markets analyzed. "Even more surprising," says Preis, "we find that this empirical law with a unique parameter is valid for very small bubbles as well as for huge bubbles." In other words, the formation of bullish and bearish trends does not depend on the time scale. The well known catastrophic bubbles that occur over large time scales, such as the global financial crashes of 1929 and 2008, are not outliers. "We found the blueprint of financial trends," summarizes Preis and concludes: "We can learn from the large number of tiny bubbles how huge market bubbles emerge and burst. The challenge is to destroy bubbles before they become huge."

The importance of these findings is echoed by Dirk Helbing, professor of sociology at the Swiss Federal Institute of Technology. Helbing leads the FuturICT Flagship project, which intends to unify the best scientists in a 10-year program of the European Union to explore social life on earth and everything it relates to. "One ultimate goal of the FuturICT project is to manage challenges that make the modern world so difficult to predict, including financial crises. The discovery by Tobias Preis and his colleagues may be of crucial importance for the financial and economic crisis observatory that this flagship project will create."

The blueprint of bubbles and crashes is also the subject of a feature article in the May issue of Physics World (Tobias Preis and H. Eugene Stanley, "Bubble trouble," Physics World 24, 29-32 2011)

Contact:
Dr. Tobias Preis,
Center for Polymer Studies and Department of Physics, Boston University, Boston, USA
preis@physics.bu.edu or mail@tobiaspreis.de
http://www.tobiaspreis.de
T +49-178-3358225
"Switching processes in financial markets",
Proceedings of the National Academy of Science (PNAS),
Online before print version can be found at http://www.pnas.org/cgi/doi/10.1073/pnas.1019484108

About the Center for Polymer Studies at Boston University—The Center for Polymer Studies (CPS) is a scientific visualization research center in the Physics Department and Science and Mathematics Education Center at Boston University. CPS is devoted to interdisciplinary research in aspects of polymer, random, and fractal systems and applies its our expertise in this area to develop experimental and computational materials for high school and undergraduate education.

About Boston University—Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU contains 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Dr. Tobias Preis | EurekAlert!
Further information:
http://www.bu.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>