Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeppelin NT Flies for European Climate Research -Jülich researchers measure air quality over Europe

17.11.2011
The test programme began in Friedrichshafen this week: Jülich climatologists are testing and optimizing the measuring equipment in preparation for the largest research application ever of a Zeppelin NT, starting in May 2012.

At that time, the airship will undertake a number of flight missions, each lasting several weeks, coordinated by Jülich researchers. These missions aim to study the atmosphere over the Netherlands, Italy, the Mediterranean Sea, and finally Finland in 2013. The campaign is part of the EU’s PEGASOS project, in which 26 partners from 15 European nations are studying the relationships between atmospheric chemistry and climate change.

The researchers in Friedrichshafen will fit three different sets of measuring instruments into the interior of the airship and test their function during flights. Beginning in May, these instruments are then intended to gather data on the atmosphere’s ability to clean itself, among other aspects of interest. In this regard, special attention will be paid to the atmosphere’s “detergent”, known chemically as the hydroxyl (OH) radical. This radical initiates the breakdown of most pollutants and thus serves as a measure of the atmosphere’s cleaning capacity. In its turn, it is also recycled in a natural loop. However, regarding this recycling theory, Jülich researchers have discovered several anomalies in the last few years. The airship flights are intended to explain these anomalies, since they are at precisely the altitudes where such processes take place. Other questions relate to the phenomenon of suspended particles: What are their origins? How to they agglomerate to form larger particles? What chemical and physical effects do they have on climate and air quality? And what part do they play in recycling the natural detergent?

The Zeppelin NT will be accompanied on its mission by an international team of 15 scientists and technicians. Its first flight in 2012 will take it to Cabauw in the Netherlands for two weeks, followed in June by at least five weeks in Italy, where measurements will be taken over the Po Valley and the Adriatic Sea in cooperation with Italian scientists. Then in April 2013, the atmosphere researchers will set off on a two-month expedition to northern Europe; their final destination being Hyytiälä in Finland. Both the flight paths and the measuring locations are coordinated with existing ground measuring stations. This will enable the researchers to compare data from the flight directly with measurements from fixed locations.

The unique flight characteristics of the Zeppelin NT mean that is ideally suited to complement aircraft and fixed ground stations. It can float slowly, hover, climb and descend vertically, fly for up to 24 hours, all while carrying measuring instrumentation weighing more than a tonne. This will enable the Jülich team to conduct a precise examination of the distribution of trace gases in a region up to an altitude of 1000 metres, known as the planetary boundary layer. Until now, little research has been carried out in this region, which is chemically highly reactive and where the fate of most pollutants emitted from the Earth’s surface is decided. It is therefore essential to collect information in order to gain a detailed understanding of atmospheric processes and to test conceptual models.

The EU’s PEGASOS project (Pan-European-Gas-AeroSOl-Climate Interaction Study) is funded by the European Commission under the auspices of the Seventh Framework Programme. The purpose of the campaign is to measure the effect of atmospheric chemistry on climate change and to identify the critical processes. The results would then provide the scientific bases for determining EU-wide climate protection measures, thus improving air quality taking into account effects on climate change. The research will also be available for global climate policy, since most of the project partners are also involved in the work of the United Nations Intergovernmental Panel on Climate Change (IPCC).

Contacts:

Forschungszentrum Jülich
Prof. Dr. Andreas Wahner
Institute of Energy and Climate Research, Troposphere (IEK-8)
Tel: +49 2461 61-5932
Email: a.wahner@fz-juelich.de
PD Dr. Astrid Kiendler-Scharr
Institute of Energy and Climate Research, Troposphere (IEK-8)
phone: +0049 (0)2461 61-4185
Email: a.kiendler-scharr@fz-juelich.de
PD Dr. Thomas Mentel
Institute of Energy and Climate Research, Troposphere (IEK-8)
phone: +0049 (0)2461 61-6921
Email: t.mentel@fz-juelich.de
Press contacts:
Erhard Zeiss, Dr. Barbara Schunk
Tel. +49 2461 61 -1841/-8031
Email: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>