Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Zealand Earthquake Reveals Vulnerability of Many U.S. Urban Centers

24.02.2011
“The 6.3 magnitude earthquake that struck Christchurch, New Zealand on Feb. 22 demonstrates the vulnerability of urban centers with important lessons for the U.S.

“The earthquake was actually an aftershock associated with the 7.1 magnitude Darfield earthquake that occurred about 15 km west of Christchurch on Sept. 4, 2010. Since then, aftershocks have been occurring on the Greendale Fault, the causative fault, and progressing toward the Christchurch central business district. The relatively shallow depth of the earthquake below the city shows that even 5 to 10 seconds of strong shaking can have devastating effects.

“Some reasons for the serious damage are the many unreinforced masonry buildings in Christchurch and the occurrence of soil liquefaction throughout the city. Soil liquefaction is the transformation of saturated granular soil into a liquid-like substance from high groundwater pressures triggered by strong shaking. The soil liquefaction in Christchurch has damaged many miles of underground water mains, sewers, and electric power cables, and damaged several bridges.

“Many U.S. cities in areas vulnerable to earthquakes have many unreinforced masonry buildings, like those in Christchurch, and are founded on liquefiable soils.”

--Thomas D. O’Rourke, an expert on the impact of earthquakes on infrastructure and Professor of Civil and Environmental Engineering at Cornell University

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>