Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yellowstone's Plumbing Exposed

15.12.2009
The most detailed seismic images yet published of the plumbing that feeds the Yellowstone supervolcano shows a plume of hot and molten rock rising at an angle from the northwest at a depth of at least 410 miles, contradicting claims that there is no deep plume, only shallow hot rock moving like slowly boiling soup.

A related University of Utah study used gravity measurements to indicate the banana-shaped magma chamber of hot and molten rock a few miles beneath Yellowstone is 20 percent larger than previously believed, so a future cataclysmic eruption could be even larger than thought.

The study’s of Yellowstone’s plume also suggests the same “hotspot” that feeds Yellowstone volcanism also triggered the Columbia River “flood basalts” that buried parts of Oregon, Washington state and Idaho with lava starting 17 million years ago.

Those are key findings in four National Science Foundation-funded studies in the latest issue of the Journal of Volcanology and Geothermal Research. The studies were led by Robert B. Smith, research professor and professor emeritus of geophysics at the University of Utah and coordinating scientist for the Yellowstone Volcano Observatory.

“We have a clear image, using seismic waves from earthquakes, showing a mantle plume that extends from beneath Yellowstone,’’ Smith says.

The plume angles downward 150 miles to the west-northwest of Yellowstone and reaches a depth of at least 410 miles, Smith says. The study estimates the plume is mostly hot rock, with 1 percent to 2 percent molten rock in sponge-like voids within the hot rock.

Some researchers have doubted the existence of a mantle plume feeding Yellowstone, arguing instead that the area’s volcanic and hydrothermal features are fed by convection – the boiling-like rising of hot rock and sinking of cooler rock – from relatively shallow depths of only 185 miles to 250 miles.

The Hotspot: A Deep Plume, Blobs and Shallow Magma

Some 17 million years ago, the Yellowstone hotspot was located beneath the Oregon-Idaho-Nevada border region, feeding a plume of hot and molten rock that produced “caldera” eruptions – the biggest kind of volcanic eruption on Earth.

As North America slid southwest over the hotspot, the plume generated more than 140 huge eruptions that produced a chain of giant craters – calderas – extending from the Oregon-Idaho-Nevada border northeast to the current site of Yellowstone National Park, where huge caldera eruptions happened 2.05 million, 1.3 million and 642,000 years ago.

These eruptions were 2,500, 280 and 1,000 times bigger, respectively, than the 1980 eruption of Mount St. Helens. The eruptions covered as much as half the continental United States with inches to feet of volcanic ash. The Yellowstone caldera, 40 miles by 25 miles, is the remnant of that last giant eruption.

The new study reinforces the view that the hot and partly molten rock feeding volcanic and geothermal activity at Yellowstone isn’t vertical, but has three components:

-- The 45-mile-wide plume that rises through Earth’s upper mantle from at least 410 miles beneath the surface. The plume angles upward to the east-southeast until it reaches the colder rock of the North American crustal plate, and flattens out like a 300-mile-wide pancake about 50 miles beneath Yellowstone. The plume includes several wider “blobs” at depths of 355 miles, 310 miles and 265 miles.

“This conduit is not one tube of constant thickness,” says Smith. “It varies in width at various depths, and we call those things blobs.”

-- A little-understood zone, between 50 miles and 10 miles deep, in which blobs of hot and partly molten rock break off of the flattened top of the plume and slowly rise to feed the magma reservoir directly beneath Yellowstone National Park.

-- A magma reservoir 3.7 miles to 10 miles beneath the Yellowstone caldera. The reservoir is mostly sponge-like hot rock with spaces filled with molten rock.

“It looks like it’s up to 8 percent or 15 percent melt,” says Smith. “That’s a lot.”

Researchers previously believed the magma chamber measured roughly 6 to 15 miles from southeast to northwest, and 20 or 25 miles from southwest to northeast, but new measurements indicate the reservoir extends at least another 13 miles outside the caldera’s northeast boundary, Smith says.

He says the gravity and other data show the magma body “is an elongated structure that looks like a banana with the ends up. It is a lot larger than we thought – I would say about 20 percent [by volume]. This would argue there might be a larger magma source available for a future eruption.”

Images of the magma reservoir were made based on the strength of Earth’s gravity at various points in Yellowstone. Hot and molten rock is less dense than cold rock, so the tug of gravity is measurably lower above magma reservoirs.

The Yellowstone caldera, like other calderas on Earth, huffs upward and puffs downward repeatedly over the ages, usually without erupting. Since 2004, the caldera floor has risen 3 inches per year, suggesting recharge of the magma body beneath it.

How to View a Plume

Seismic imaging uses earthquake waves that travel through the Earth and are recorded by seismometers. Waves travel more slowly through hotter rock and more quickly in cooler rock. Just as X-rays are combined to make CT-scan images of features in the human body, seismic wave data are melded to produce images of Earth’s interior.

The study, the Yellowstone Geodynamics Project, was conducted during 1999-2005. It used an average of 160 temporary and permanent seismic stations – and as many as 200 – to detect waves from some 800 earthquakes, with the stations spaced 10 miles to 22 miles apart – closer than other networks and better able to “see” underground. Some 160 Global Positioning System stations measured crustal movements.

By integrating seismic and GPS data, “it’s like a lens that made the upper 125 miles much clearer and allowed us to see deeper, down to 410 miles,” Smith says.

The study also shows warm rock – not as hot as the plume – stretching from Yellowstone southwest under the Snake River Plain, at depths of 20 miles to 60 miles. The rock is still warm from eruptions before the hotspot reached Yellowstone.

A Plume Blowing in the 2-inch-per-year Mantle Wind

Seismic imaging shows a “slow” zone from the top of the plume, which is 50 miles deep, straight down to about 155 miles, but then as you travel down the plume, it tilts to the northwest as it dives to a depth of 410 miles, says Smith.

That is the base of the global transition zone – from 250 miles to 410 miles deep – that is the boundary between the upper and lower mantle – the layers below Earth’s crust.

At that depth, the plume is about 410 miles beneath the town of Wisdom, Mont., which is 150 miles west-northwest of Yellowstone, says Smith.

He says “it wouldn’t surprise me” if the plume extends even deeper, perhaps originating from the core-mantle boundary some 1,800 miles deep.

Why doesn’t the plume rise straight upward? “This plume material wants to come up vertically, it wants to buoyantly rise,” says Smith. “But it gets caught in the ‘wind’ of the upper mantle flow, like smoke rising in a breeze.” Except in this case, the “breeze” of slowly flowing upper mantle rock is moving horizontally 2 inches per year.

While the crustal plate moves southwest, the warm, underlying mantle slowly boils due to convection, with warm areas moving upward and cooler areas downward. Northwest of Yellowstone, this convection is such that the plume is “blown” east-southeast by mantle convection, so it angles upward toward Yellowstone.

Scientists have debated for years whether Yellowstone’s volcanism is fed by a plume rising from deep in the Earth or by shallow churning in the upper mantle caused by movements of the overlying crust. Smith says the new study has produced the most detailed image of the Yellowstone plume yet published.

But a preliminary study by other researchers suggests Yellowstone’s plume goes deeper than 410 miles, ballooning below that depth into a wider zone of hot rock that extends at least 620 miles deep.

The notion that a deep plume feeds Yellowstone got more support from a study published this month indicating that the Hawaiian hotspot – which created the Hawaiian Islands – is fed by a plume that extends downward at least 930 miles, tilting southeast.

A Common Source for Yellowstone and the Columbia River Basalts?

Based on how the Yellowstone plume slants now, Smith and colleagues projected on a map where the plume might have originated at depth when the hotspot was erupting at the Oregon-Idaho-Nevada border area from 17 million to almost 12 million years ago.

They saw overlap, between the zones within the Earth where eruptions originated near the Oregon-Idaho-Nevada border and where the famed Columbia River Basalt eruptions originated when they were most vigorous 17 million to 14 million years ago.

Their conclusion: the Yellowstone hotspot plume might have fed those gigantic lava eruptions, which covered much of eastern Oregon and eastern Washington state.

I argue it is the common source,” Smith says. “It’s neat stuff and it fits together.”

Smith conducted the seismic study with six University of Utah present or former geophysicists – former postdoctoral researchers Michael Jordan, of SINTEF Petroleum Research in Norway, and Stephan Husen, of the Swiss Federal Institute of Technology; postdoc Christine Puskas; Ph.D. student Jamie Farrell; and former Ph.D. students Gregory Waite, now at Michigan Technological University, and Wu-Lung Chang, of National Central University in Taiwan. Other co-authors were Bernhard Steinberger of the Geological Survey of Norway and Richard O’Connell of Harvard University.

Smith conducted the gravity study with former University of Utah graduate student Katrina DeNosaquo and Tony Lowry of Utah State University in Logan.

-- News media may request a 5.5-megabyte MPG movie file showing the Yellowstone hotspot plume by e-mailing leesiegel@ucomm.utah.edu

-- PDF files of the new studies may be downloaded from: http://www.uusatrg.utah.edu/

Contacts:
-- Robert B. Smith, research professor and professor emeritus of geophysics – office (801) 581-7129, cellular (801) 557-2239, robert.b.smith@utah.edu (Media: Please call Smith’s cell phone.)

-- Lee Siegel, science news specialist, University of Utah Public Relations – office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

AMERICAN GEOPHYSICAL UNION (AGU) MEDIA NOTE: During the AGU meeting in San Francisco, Smith will deliver a talk on the Yellowstone plume study from
1:40 p.m. to 1:55 p.m. Friday, Dec. 18, in room 2020, Moscone West. The
abstract number is V53A-01. It is the first talk during a 1:40-3:40 p.m.
session on Cenozoic volcanism in western North America.

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>