Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays use diamonds as a window to the center of the Earth

14.08.2008
Diamonds from Brazil have provided the answers to a question that Earth scientists have been trying to understand for many years: how is oceanic crust that has been subducted deep into the Earth recycled back into volcanic rocks?

A team of researchers, led by the University of Bristol, working alongside colleagues at the STFC Daresbury Laboratory, have gained a deeper insight into how the Earth recycles itself in the deep earth tectonic cycle way beyond the depths that can be accessed by drilling. The full paper on this research has been published (31 July) in the scientific journal, Nature.

The Earth's oceanic crust is constantly renewed in a cycle which has been occurring for billions of years. This crust is constantly being renewed from below by magma from the Earth's mantle that has been forced up at mid-ocean ridges. This crust is eventually returned to the mantle, sinking down at subduction zones that extend deep beneath the continents. Seismic imaging suggests that the oceanic crust can be subducted to depths of almost 3000km below the Earth's surface where it can remain for billions of years, during which time the crust material develops its own unique 'flavour' in comparison with the surrounding magmas. Exactly how this happens is a question that has baffled Earth scientists for years.

The Earth's oceanic crust lies under seawater for millions of years, and over time reacts with the seawater to form carbonate minerals, such as limestone, When subducted, these carbonate minerals have the effect of lowering the melting point of the crust material compared to that of the surrounding magma. It is thought that this melt is loaded with elements that carry the crustal 'flavour'.

This team of researchers have now proven this theory by looking at diamonds from the Juina area of Brazil. As the carbonate-rich magma rises through the mantle, diamonds crystallise, trapping minute quantities of minerals in the process. They form at great depths and pressures and therefore can provide clues as to what is happening at the Earth's deep interior, down to several hundred kilometres - way beyond the depths that can be physically accessed by drilling. Diamonds from the Juina area are particularly renowned for these mineral inclusions.

At the Synchrotron Radiation Source (SRS) at the STFC Daresbury Laboratory, the team used an intense beam of x-rays to look at the conditions of formation for the mineral perovskite which occurs in these diamonds but does not occur naturally near the Earth's surface. With a focused synchrotron X-ray beam less than half the width of a human hair, they used X-ray diffraction techniques to establish the conditions at which perovskite is stable, concluding that these mineral inclusions were formed up to 700km into the Earth in the mantle transition zone.

These results, backed up by further experiments carried out at the University of Edinburgh, the University of Bayreuth in Germany, and the Advanced Light Source in the USA, enabled the research team to show that the diamonds and their perovskite inclusions had indeed crystallised from very small-degree melts in the Earth's mantle. Upon heating, oceanic crust forms carbonatite melts, super-concentrated in trace elements with the 'flavour' of the Earth's oceanic crust. Furthermore, such melts may be widespread throughout the mantle and may have been 'flavouring' the mantle rocks for a very long time.

Dr Alistair Lennie, a research scientist at STFC Daresbury Laboratory, said: "Using X-rays to find solutions to Earth science questions is an area that has been highly active on the SRS at Daresbury Laboratory for some time. We are very excited that the SRS has contributed to answering such long standing questions about the Earth in this way."

Dr. Michael Walter, Department of Earth Sciences, University of Bristol, said: "The resources available at Daresbury's SRS for high-pressure research have been crucial in helping us determine the origin of these diamonds and their inclusions."

Wendy Taylor | EurekAlert!
Further information:
http://www.dl.ac.uk

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>