Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's most extreme deep-sea vents revealed

10.01.2012
Deeper than any seen before, and teeming with new creatures

Scientists have revealed details of the world's most extreme deep-sea volcanic vents, 5 kilometres down in a rift in the Caribbean seafloor.

The undersea hot springs, which lie 0.8 kilometres deeper than any seen before, may be hotter than 450 °C and are shooting a jet of mineral-laden water more than a kilometre into the ocean above.

Despite these extreme conditions, the vents are teeming with thousands of a new species of shrimp that has a light-sensing organ on its back. And having found yet more 'black smoker' vents on an undersea mountain nearby, the researchers suggest that deep-sea vents may be more widespread around the world than anyone thought.

Reporting in the scientific journal Nature Communications this week, a team led by marine geochemist Dr Doug Connelly at the National Oceanography Centre in Southampton and marine biologist Dr Jon Copley of the University of Southampton has revealed details of the world's deepest known 'black smoker' vents, so-called for the smoky-looking hot fluids that gush from them.

During an expedition in April 2010 aboard the Royal Research Ship James Cook, the scientists used the National Oceanography Centre's robot submarine called Autosub6000 and a deep-diving vehicle, HyBIS, manufactured by the British firm, Hydro-Lek to locate and study the vents at a depth of five kilometres in the Cayman Trough, an undersea trench south of the Cayman Islands.

The vents, which the team named the Beebe Vent Field after the first scientist to venture into the deep ocean, are gushing hot fluids that are unusually rich in copper, and shooting a jet of mineral-laden water four times higher into the ocean above than other deep-sea vents. Although the scientists were not able to measure the temperature of the vents directly, these two features indicate that the world's deepest known vents may be hotter than 450 ºC, according to the researchers. "These vents may be one of the few places on the planet where we can study reactions between rocks and 'supercritical' fluids at extreme temperatures and pressures," says Connelly.

The team found a new species of pale shrimp congregating in hordes (up to 2,000 shrimp per m2) around the six-metre tall mineral spires of the vents. Lacking normal eyes, the shrimp instead have a light-sensing organ on their backs, which may help them to navigate in the faint glow of deep-sea vents. The researchers have named the shrimp Rimicaris hybisae, after the deep-sea vehicle that they used to collect them.

The Cayman shrimp is related to a species called Rimicaris exoculata, found at other deep-sea vents 4,000 kilometres away on the Mid-Atlantic Ridge. Elsewhere at the Beebe Vent Field, the team saw hundreds of white-tentacled anemones lining cracks where warm water seeps from the sea bed. "Studying the creatures at these vents, and comparing them with species at other vents around the world; will help us to understand how animals disperse and evolve in the deep ocean," says Copley.

The researchers also found black smoker vents on the upper slopes of an undersea mountain called Mount Dent. Mount Dent rises nearly three kilometres above the seafloor of the Cayman Trough, but its peak is still more than three kilometres beneath the waves. The mountain formed when a vast slab of rock was twisted up out of the ocean floor by the forces that pull the plates of the Earth's crust apart.

"Finding black smoker vents on Mount Dent was a complete surprise," says Connelly. "Hot and acidic vents have never been seen in an area like this before, and usually we don't even look for vents in places like this." Because undersea mountains like Mount Dent may be quite common in the oceans, the discovery suggests that deep-sea vents might be more widespread around the world than previously thought.

The vents on Mount Dent, which the team has named the Von Damm Vent Field to commemorate the life of geochemist Karen Von Damm, are also thronged with the new species of shrimp, along with snake-like fish, and previously unseen species of snail and a flea-like crustacean called an amphipod. "One of the big mysteries of deep-sea vents is how animals are able to disperse from vent field to vent field, crossing the apparently large distances between them," says Copley. "But maybe there are more 'stepping stones' like these out there than we realised."

The UK expedition that revealed the vents followed a US expedition in November 2009, which detected the plumes of water from deep-sea vents in the Cayman Trough. A second US expedition is currently using a deep-diving remotely operated vehicle to investigate the vents further and the UK team also plans to return to the Cayman Trough in 2013 with Isis, the National Oceanography Centre's deep-diving remotely operated vehicle, which can work at depths of up to six kilometres.

Dr Jon Copley | EurekAlert!
Further information:
http://www.noc.soton.ac.uk/

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>