Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winds hide Atlantic variability from Europe's winters

15.03.2016

Study reveals how wind patterns change along with sea-surface temperatures

Shifting winds may explain why long-term fluctuations in North Atlantic sea surface temperatures have no apparent influence on Europe's wintertime temperatures. The findings, published in Nature Communications, could also have implications for how Europe's climate will evolve amid global warming.


The map reflects how the winds blowing towards Europe shift with fluctuations in North Atlantic sea-surface temperature. During decades when the sea is cool (associated with blue colors), the prevailing winds are more likely to flow across the Atlantic from North America, keeping western European air temperatures mild. In periods when the ocean surface warms (associated with red), the prevailing winds are more prone to sweep down from the north.

Credit: Ayako Yamamoto

In the mid-1990s, scientists assembled the first century-long record of North Atlantic sea surface temperatures and quickly discovered a cycle of heating and cooling at the surface of the ocean. Each of these phases lasted for decades, even as temperatures warmed overall during the course of the century. Since this discovery, these fluctuations in ocean temperature have been linked to all manner of Northern Hemisphere climate disturbances, from Sahel drought to North Atlantic hurricanes.

Research also linked European climate variability to the temperature swings of its neighboring ocean in the spring, summer and fall. Surprisingly, however, no imprint of the ocean's variability could be found in Western Europe's wintertime temperature record. This absence was especially puzzling in light of the fact that Europe's mild winters are a direct consequence of its enviable location downwind of the North Atlantic.

Now, a study by researchers at McGill University and the University of Rhode Island suggests that the answer to this puzzle lies in the winds themselves. The fluctuations in ocean temperature are accompanied by shifts in the winds. These wind shifts mean that air arrives in Western Europe via very different pathways in decades when the surface of the North Atlantic is warm, compared to decades when it is cool.

Paths of virtual particles traced

The researchers studied the winds and their interaction with the ocean in a recently developed reconstruction of 20th century climate. Their main approach was to launch virtual particles into the winds, and trace their journey for ten key days leading up to their arrival in Western Europe. They repeated this procedure using the wind field for each winter of the last 72 years, a period for which the winds of the North Atlantic have already been carefully documented and validated.

The new research reveals that, in decades in which North Atlantic sea surface temperatures are elevated, winds deliver air to Europe disproportionately from the north. In contrast, in decades of coolest sea surface temperature, swifter winds extract more heat from the western and central Atlantic before arriving in Europe. The researchers suggest the distinct atmospheric pathways hide the ocean oscillation from Europe in winter.

Ongoing debate

Whether the atmosphere is the tail to the ocean's dog or vice versa remains up for debate. "There is an ongoing argument about whether the ocean circulation sets the slow temperature fluctuations at its surface, or the atmosphere is the more important agent," says University of Rhode Island professor Jaime Palter, one of the authors,

If, as many climate models suggest, the ocean is a main driver, then this research has implications for the future of European climate. A system of ocean currents, popularly referred to as the "Great Ocean Conveyor," brings warm waters to the North Atlantic. This current system is predicted to slow down in response to global warming, causing the North Atlantic to cool.

"It is often presumed that the cooler North Atlantic will quickly lead to cooling in Europe, or at least a slowdown in its rate of warming," says Ayako Yamamoto, a PhD student in McGill's department of Atmospheric and Oceanic Sciences and lead author of the study. "But our research suggests that the dynamics of the atmosphere might stop this relative cooling from showing up in Europe in winter in the decades following an Atlantic cooling."

###

This work was supported by funding from McGill University, the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec - Nature et technologies, and Québec-Océan.

"The absence of an Atlantic imprint on the multi-decadal variability of wintertime European temperature," Ayako Yamamoto and Jaime B. Palter, Nature Communications, published online March 15, 2016. DOI: 10.1038/NCOMMS10930

Media Contact

Christopher Chipello
christopher.chipello@mcgill.ca
514-398-4201

 @McGillU

http://www.mcgill.ca 

Christopher Chipello | EurekAlert!

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>