Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Window into the past: researchers find ancient sediments on the seafloor of the Arctic

10.10.2014

An international team of scientists headed by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) opened a new window into the past of the Arctic Ocean during the now ending summer expedition of the research vessel Polarstern.

Along steep slide scars on Lomonosov Ridge the scientists discovered considerably hardened sediments that are presumably ten or perhaps even 30 to 40 million years old and will provide the researchers new insights into the climate history of the Arctic Ocean.


In spite of severe ice conditions, it was possible to collect good data on the slope of Lomonosov Ridge in the last few days and display them three-dimensionally.

Graphics: Laura Jensen, Alfred Wegener Institute

The valuable soil samples will be unloaded after the return of the research vessel to its homeport and then comprehensively examined in the home laboratories in the coming months and years.

The sediment find on Lomonosov Ridge, an enormous underwater mountain range that stretches across the entire Arctic Ocean, was one of many highlights on this year’s Polarstern expedition to the central Arctic. For nine weeks 50 scientists and technicians from Belgium, China, Germany, France, Canada, Korea, the Netherlands, Norway, Russia, Saudi Arabia and the USA studied the Arctic seafloor using different geoscientific methods.

One of the key questions was: How has the climate in the Arctic changed over the past 20,000 to 500,000 years as well as during the last 20 to 60 million years? In the latter period the Arctic has transformed from a warm ice-free ocean with water temperatures of around 25°C to the now familiar cold ice-covered ocean. Up to now there is very little data, particularly on such large time scales of millions of years.

The reason for the fragmentary knowledge is easy to name: with few exceptions, there is simply a lack of suitable old core material from the central Arctic that would permit such research. To examine climate changes in the Earth’s history, the researchers looked for places on the seafloor, such as on Lomonosov Ridge, where old deposits and rock are situated just under the soil surface. They can be collected by means of simple equipment like a box corer or gravity corer.

The scientists found what they were looking for on the western slope of this large submarine mountain range. “Gigantic landslides must have repeatedly occurred here, thus uncovering the very old sediment and rock formations underneath that were over 500 metres thick. We were also surprised about the magnitude of these slide scars, which extend over a length of more than 300 km nearly from the North Pole to the southern end of the ridge on the Siberian side,” says AWI geologist and chief scientist Prof. Dr. Rüdiger Stein.

Subsequently he and his team intensively took samples at the site of the find for two days using box corers and gravity corers. “Even though we cannot accurately determine the age of the sediments yet, we are quite certain on the basis of our database that we have opened wide a gateway into the past through these sediment samples – the forthcoming extensive in-depth studies will show how much and what we can learn from them,” adds the chief scientist.

In spite of all the euphoria, however, all excursion participants agree that this can only be the first step, other important ones must follow. “Though our new sediment cores make an initial undreamt-of insight into the early climate history of the Arctic possible, these climate records remain fragmentary.

To be able to completely reveal the great secret about climate development in the Arctic and its causes in the course of the last 20 to 60 million years, thicker continuous sediment sequences that can only be obtained by means of deep drilling will be required. Such drilling in the Arctic still represents a great scientific and technical challenge for the marine geosciences,” explains Stein.

“Geophysics can help here,” says Prof. Dr. Wilfried Jokat, head of the geophysics programme on board this expedition. “Our new geophysical data records will enable us to more specifically plan scientific deep drilling in the Lomonosov Ridge area, as we have already proposed in the framework of the international drilling program IODP (International Ocean Discovery Program), and put it into practice.”

Please find all weekly reports of this expedition on our website: http://www.awi.de/en/infrastructure/ships/polarstern/weekly_reports/all_expeditions/ps85_ps87_ark_xxviii/ps87/>

Notes for Editors:

Your contact person is Dr. Folke Mehrtens, Dept. of Communications and Media Relations (phone +49 471 4831-2007; e-mail: medien(at)awi.de). Please find printable images on our website: http://www.awi.de/en/news/press_releases/

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>