Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Window into the past: researchers find ancient sediments on the seafloor of the Arctic

10.10.2014

An international team of scientists headed by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) opened a new window into the past of the Arctic Ocean during the now ending summer expedition of the research vessel Polarstern.

Along steep slide scars on Lomonosov Ridge the scientists discovered considerably hardened sediments that are presumably ten or perhaps even 30 to 40 million years old and will provide the researchers new insights into the climate history of the Arctic Ocean.


In spite of severe ice conditions, it was possible to collect good data on the slope of Lomonosov Ridge in the last few days and display them three-dimensionally.

Graphics: Laura Jensen, Alfred Wegener Institute

The valuable soil samples will be unloaded after the return of the research vessel to its homeport and then comprehensively examined in the home laboratories in the coming months and years.

The sediment find on Lomonosov Ridge, an enormous underwater mountain range that stretches across the entire Arctic Ocean, was one of many highlights on this year’s Polarstern expedition to the central Arctic. For nine weeks 50 scientists and technicians from Belgium, China, Germany, France, Canada, Korea, the Netherlands, Norway, Russia, Saudi Arabia and the USA studied the Arctic seafloor using different geoscientific methods.

One of the key questions was: How has the climate in the Arctic changed over the past 20,000 to 500,000 years as well as during the last 20 to 60 million years? In the latter period the Arctic has transformed from a warm ice-free ocean with water temperatures of around 25°C to the now familiar cold ice-covered ocean. Up to now there is very little data, particularly on such large time scales of millions of years.

The reason for the fragmentary knowledge is easy to name: with few exceptions, there is simply a lack of suitable old core material from the central Arctic that would permit such research. To examine climate changes in the Earth’s history, the researchers looked for places on the seafloor, such as on Lomonosov Ridge, where old deposits and rock are situated just under the soil surface. They can be collected by means of simple equipment like a box corer or gravity corer.

The scientists found what they were looking for on the western slope of this large submarine mountain range. “Gigantic landslides must have repeatedly occurred here, thus uncovering the very old sediment and rock formations underneath that were over 500 metres thick. We were also surprised about the magnitude of these slide scars, which extend over a length of more than 300 km nearly from the North Pole to the southern end of the ridge on the Siberian side,” says AWI geologist and chief scientist Prof. Dr. Rüdiger Stein.

Subsequently he and his team intensively took samples at the site of the find for two days using box corers and gravity corers. “Even though we cannot accurately determine the age of the sediments yet, we are quite certain on the basis of our database that we have opened wide a gateway into the past through these sediment samples – the forthcoming extensive in-depth studies will show how much and what we can learn from them,” adds the chief scientist.

In spite of all the euphoria, however, all excursion participants agree that this can only be the first step, other important ones must follow. “Though our new sediment cores make an initial undreamt-of insight into the early climate history of the Arctic possible, these climate records remain fragmentary.

To be able to completely reveal the great secret about climate development in the Arctic and its causes in the course of the last 20 to 60 million years, thicker continuous sediment sequences that can only be obtained by means of deep drilling will be required. Such drilling in the Arctic still represents a great scientific and technical challenge for the marine geosciences,” explains Stein.

“Geophysics can help here,” says Prof. Dr. Wilfried Jokat, head of the geophysics programme on board this expedition. “Our new geophysical data records will enable us to more specifically plan scientific deep drilling in the Lomonosov Ridge area, as we have already proposed in the framework of the international drilling program IODP (International Ocean Discovery Program), and put it into practice.”

Please find all weekly reports of this expedition on our website: http://www.awi.de/en/infrastructure/ships/polarstern/weekly_reports/all_expeditions/ps85_ps87_ark_xxviii/ps87/>

Notes for Editors:

Your contact person is Dr. Folke Mehrtens, Dept. of Communications and Media Relations (phone +49 471 4831-2007; e-mail: medien(at)awi.de). Please find printable images on our website: http://www.awi.de/en/news/press_releases/

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>