Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Window into the past: researchers find ancient sediments on the seafloor of the Arctic

10.10.2014

An international team of scientists headed by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) opened a new window into the past of the Arctic Ocean during the now ending summer expedition of the research vessel Polarstern.

Along steep slide scars on Lomonosov Ridge the scientists discovered considerably hardened sediments that are presumably ten or perhaps even 30 to 40 million years old and will provide the researchers new insights into the climate history of the Arctic Ocean.


In spite of severe ice conditions, it was possible to collect good data on the slope of Lomonosov Ridge in the last few days and display them three-dimensionally.

Graphics: Laura Jensen, Alfred Wegener Institute

The valuable soil samples will be unloaded after the return of the research vessel to its homeport and then comprehensively examined in the home laboratories in the coming months and years.

The sediment find on Lomonosov Ridge, an enormous underwater mountain range that stretches across the entire Arctic Ocean, was one of many highlights on this year’s Polarstern expedition to the central Arctic. For nine weeks 50 scientists and technicians from Belgium, China, Germany, France, Canada, Korea, the Netherlands, Norway, Russia, Saudi Arabia and the USA studied the Arctic seafloor using different geoscientific methods.

One of the key questions was: How has the climate in the Arctic changed over the past 20,000 to 500,000 years as well as during the last 20 to 60 million years? In the latter period the Arctic has transformed from a warm ice-free ocean with water temperatures of around 25°C to the now familiar cold ice-covered ocean. Up to now there is very little data, particularly on such large time scales of millions of years.

The reason for the fragmentary knowledge is easy to name: with few exceptions, there is simply a lack of suitable old core material from the central Arctic that would permit such research. To examine climate changes in the Earth’s history, the researchers looked for places on the seafloor, such as on Lomonosov Ridge, where old deposits and rock are situated just under the soil surface. They can be collected by means of simple equipment like a box corer or gravity corer.

The scientists found what they were looking for on the western slope of this large submarine mountain range. “Gigantic landslides must have repeatedly occurred here, thus uncovering the very old sediment and rock formations underneath that were over 500 metres thick. We were also surprised about the magnitude of these slide scars, which extend over a length of more than 300 km nearly from the North Pole to the southern end of the ridge on the Siberian side,” says AWI geologist and chief scientist Prof. Dr. Rüdiger Stein.

Subsequently he and his team intensively took samples at the site of the find for two days using box corers and gravity corers. “Even though we cannot accurately determine the age of the sediments yet, we are quite certain on the basis of our database that we have opened wide a gateway into the past through these sediment samples – the forthcoming extensive in-depth studies will show how much and what we can learn from them,” adds the chief scientist.

In spite of all the euphoria, however, all excursion participants agree that this can only be the first step, other important ones must follow. “Though our new sediment cores make an initial undreamt-of insight into the early climate history of the Arctic possible, these climate records remain fragmentary.

To be able to completely reveal the great secret about climate development in the Arctic and its causes in the course of the last 20 to 60 million years, thicker continuous sediment sequences that can only be obtained by means of deep drilling will be required. Such drilling in the Arctic still represents a great scientific and technical challenge for the marine geosciences,” explains Stein.

“Geophysics can help here,” says Prof. Dr. Wilfried Jokat, head of the geophysics programme on board this expedition. “Our new geophysical data records will enable us to more specifically plan scientific deep drilling in the Lomonosov Ridge area, as we have already proposed in the framework of the international drilling program IODP (International Ocean Discovery Program), and put it into practice.”

Please find all weekly reports of this expedition on our website: http://www.awi.de/en/infrastructure/ships/polarstern/weekly_reports/all_expeditions/ps85_ps87_ark_xxviii/ps87/>

Notes for Editors:

Your contact person is Dr. Folke Mehrtens, Dept. of Communications and Media Relations (phone +49 471 4831-2007; e-mail: medien(at)awi.de). Please find printable images on our website: http://www.awi.de/en/news/press_releases/

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>