Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Windborne Dust on High Peaks Dampens Colorado River Runoff

21.09.2010
Dust-on-snow: on spring winds, something wicked this way comes

On spring winds, something wicked this way comes--at least for the mountains of the Colorado River Basin and their ecosystems, and for people who depend on snowmelt from these mountains as a regional source of water.

"More than 80 percent of sunlight falling on fresh snow is reflected back to space," says scientist Tom Painter of the Jet Propulsion Laboratory in Pasadena, Calif., and the University of California at Los Angeles. "But sprinkle some dark particles on the snow and that number drops dramatically."

The darker dust absorbs sunlight, reducing the amount of reflected light and in turn warming the now "dirty" snow surface.

The result? Dust-on-snow events, as they're called.

That's exactly what's happening in the Colorado River Basin, according to research results published in this week's (Sept. 20, 2010) issue of the journal Proceedings of the National Academy of Sciences (PNAS).

Paper co-authors are Painter; Jeffrey Deems of the National Snow and Ice Center in Boulder, Colo.; Jayne Belnap at the U.S. Geological Survey Southwest Biological Center in Moab, Utah; Alan Hamlet of the University of Washington; Christopher Landry of the Center for Snow and Avalanche Studies in Silverton, Colo.; and Bradley Udall of the University of Colorado-NOAA Western Water Assessment.

When the winds are right and the desert is dry, dust blows eastward from the semi-arid regions of the U.S. Southwest. In a dust-up, Western style, small dark particles of the dust fall on the mountains' white snowfields, ultimately affecting the entire Colorado River watershed.

While dust has always blown into these mountains, the expansion of grazing and other disturbances in the western U.S. in the mid-to-late 1800s led to a five- to seven-fold increase in dust loading. The snow cover became darker and lasted less long.

Lee's Ferry, Arizona, is the dividing line between the upper and lower Colorado River Basins.

There, according to Painter and colleagues, peak spring runoff from the Colorado River occurs an average of three weeks earlier due to the more recent five-fold increase in such dust.

Total annual runoff at Lee's Ferry--and the Colorado River Basin as a whole--has been reduced by about five percent per year.

"Earlier melt-out allows for an extra three weeks of snow-free conditions," says Painter. "Transpired water from the uncovered vegetation during those three weeks of no-snow in the basin's mountains causes the five percent loss of water from the system."

"These researchers have brought together their collective expertise to provide a historical context for how the Colorado River and its runoff respond to dust deposition on snow," says Anjuli Bamzai, program director in the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences, which funded the research.

"The work lays the foundation for future sound water resource management of a river that serves 27 million people in seven states and two countries," she says.

Runoff from the Colorado River Basin has decreased by more than 35 billion cubic feet due to airborne dust, according to Painter.

"Lake sediments in the mountains indicate that the increased dust load came after the vast increases in grazing and agriculture in the deserts of the southwest U.S. in the late 1800s."

The snow cover, Painter says, is therefore much darker in spring than it was at that time, and melts away several weeks earlier.

"Runoff comes from the mountains in a more compressed period, which makes water management more difficult than if the water came more slowly out of the mountains."

Evaporation and sublimation of the warmer snow itself--then transpiration from the earlier-exposed vegetation--results in water losses to the atmosphere, losses that then don't go into runoff.

The lake sediments indicate that the Taylor Grazing Act of the 1930s reduced dust loading from six to seven times greater than normal, down to five times greater.

"It appears that more focus on reducing dust could be effective," says Painter, "and in turn sustain the mountain reservoir system of snow cover, potentially increase the runoff, and counter the regional effects of climate change."

Dust-on-snow events had been little understood despite frequent and regionally extensive dust deposition.

Although scientists knew from theory and modeling studies that this dust changed the albedo--the solar energy reflectance properties--of snowfields, no one had made measurements of its full impact on snowmelt rates.

Painter and colleagues are the first to make systematic measurements of dust-on-snow events along with complementary climate and hydrologic data.

"These observations have confirmed--and most importantly quantified--what many snow and climate scientists had hypothesized but only tested in models," says Jay Fein, program director in NSF's Division of Atmospheric and Geospace Sciences.

Stabilizing soils and minimizing activities that create soil disturbances could decrease dust emissions and runoff losses in the near-term.

Among other benefits, longer snow cover duration, Painter says, could reduce the need for additional reservoir storage of water supplies.

Peak runoff under "cleaner" conditions (less dust-on-snow) would then come later in summer when agricultural and other water demands are greater, says Landry.

"Earlier, faster runoff compresses water management into a narrower time window," he says.

The story does have a silver lining. If changes are made in the way desert soils are managed and dust emission is reduced, it could ease tensions over the water in the entire Colorado River Basin.

And the Colorado River needs all the melt it can get.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.
Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

Cheryl Dybas | EurekAlert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=117668&org=NSF&from=news

Further reports about: Atmospheric Colorado Dust Geospace NSF River SNOW Windborne Dust ecosystems snow cover spring winds water management

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>