Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why soil changes color in air

06.03.2014

According to the results of a recent study, soil color changes in the atmosphere basically through the oxidation of chemical substances in the soil.

The fundamental mechanism is the remodeling effect of micro-structures because of motion effects and chemical reactions of the water–soil–electrolyte–atmosphere system leading to the coupling and transforming of soil particles. The above provides a theoretical foundation for the assessment and forecast of the stability of the geotechnical environment.

Scanning Electron Microscope Images of Natural Clay and Oxidized Clay

This shows (a) natural clay (2000 magnification);(b) oxidized clay (2000 magnification); (c) natural clay (5000 magnification); (d) oxidized clay (5000 magnification).

Credit: ©Science China Press

Nowadays, with increasing focus on the harmful effects of fog and haze on human health, engineers have been presented with a series of new scientific issues such as the interactions that occur between the atmosphere and soil, the effects of the interaction on the soil, and related engineering disasters.

The mechanism for the change in characteristics of clay under ambient temperature and pressure and a normal atmosphere was investigated in the paper Research on Variability Characteristics of Micropore of Zhanjiang Clay under Ambient Temperature and Pressure, Normal Atmospheric, written by Dr. ZHANG Xian-wei and Prof. KONG Ling-wei and published by Sci China Tech Sci (Chin Ver), 2014, 44: 189.

With reference to the phenomenon that soil color changes from grayish green and light grayish green to yellow and yellowish brown when Zhanjiang clay is exposed to the atmosphere, this research reveals that the basic reason for the alteration of soil color is the oxidation reaction between the atmospheric and the oxide of iron, which reduces the plasticity, sensitivity and structural yield stress of soil. The transformation of soil properties by the atmospheric is not due to inherent changes of minerals, but the remodeling of micro-structures because of motion effects and chemical reactions of the water–soil–electrolyte–atmosphere system, leading to the coupling and transforming of soil particles. It is thus the variation of the ultra-micro-structure that is responsible for the phenomenon of the change in soil color.

Considering the prolonged effect of oxidation and its potentially adverse effect on soil stability through a reduction of structural strength, this research shows that it is necessary for geotechnical engineering to strengthen the monitoring of the effects of physical and chemical factors in the environment. The results obtained provide theoretical support for the assessment and forecast of the stability of the geotechnical environment.

###

This research is supported by two projects of the National Natural Science Foundation of China (Grant No. 41102200 and 51179186).

See the article:

Zhang X W,Kong L W. Research on variability characteristics of micropore of Zhanjiang clay under ambient temperature and pressure, normal atmospheric (in Chinese). Sci China Tech Sci (Chin Ver), 2014, 44: 189.

http://tech.scichina.com:8082/sciE/CN/abstract/abstract513752.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com

Zhang Xianwei | EurekAlert!

Further reports about: Press SCP Science atmosphere characteristics particles phenomenon remodeling structural temperature

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

Engineers take first step toward flexible, wearable, tricorder-like device

24.05.2016 | Information Technology

Rice study decodes genetic circuitry for bacterial spore formation

24.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>