Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI scientists find ancient asphalt domes off California coast

26.04.2010
They paved paradise and, it turns out, actually did put up a parking lot. A big one. Some 700 feet deep in the waters off California's jewel of a coastal resort, Santa Barbara, sits a group of football-field-sized asphalt domes unlike any other underwater features known to exist.

About 35,000 years ago, a series of apparent undersea volcanoes deposited massive flows of petroleum 10 miles offshore. The deposits hardened into domes that were discovered recently by scientists from the Woods Hole Oceanographic Institution (WHOI) and UC Santa Barbara (UCSB).

Their report—co-authored with researchers from UC Davis, the University of Sydney and the University of Rhode Island—appears online today (April 25) in the Journal Nature Geoscience. The work was funded by the National Science Foundation, U.S. Department of Energy and the Seaver Institute.

"It was an amazing experience, driving along…and all of a sudden, this mountain is staring you in the face," said Christopher M. Reddy, director of WHOI's Coastal Ocean Institute and one of the study's senior authors, as he described the discovery of the domes using the deep submersible vehicle Alvin. Moreover, the dome was teeming with undersea life. "It was essentially an oasis," he said, "almost like an artificial reef."

What really piqued the interest of Reddy—a marine geochemist who studies oil spills—was the chemical composition of the dome: "very unusual asphalt material," he said. "There aren't that many opportunities to study oil that's been sitting around on the bottom of the ocean for 35,000 years."

Reddy's unique chance came courtesy of UCSB earth scientist and lead author David L. Valentine, who first came upon the largest of the structures—named Il Duomo—and brought back a chunk of the brittle, black material in 2007 from an initial dive in Alvin, which WHOI operates for the US Navy. Valentine and Reddy were on a cruise aboard the WHOI-operated research vessel Atlantis, following up on undersea mapping survey by the Monterey Bay Aquarium Research Institute (MBARI) and the work of UCSB earth scientist Ed Keller.

"The largest [dome] is about the size of two football fields, side by side and as tall as a six-story building," Valentine said. Alvin's robotic arm snapped off a piece of the unusual formation, secured it in a basket and delivered it to Reddy aboard Atlantis.

"I was sleeping," Reddy chuckled. "Somebody woke me up and wanted me to look at the rocks and test them."

It turned out to be quite an awakening. "I was amazed at how easy it was to break," Reddy recalls, "which confirmed it wasn't solid rock" and lent credence to Keller's theory that these structures might be made of asphalt.

Without access to the sophisticated equipment in his Woods Hole lab, Reddy employed a "25-cent glass tube, the back of a Bic pen and a little nail polish remover" to analyze the crusty substance. He used the crude tools like a mortar and pestle to grind the rock, "and literally within several minutes, it became a thick oil."

"This immediately said to me that this was asphalt," Reddy said. "And I remember turning to Dave [Valentine] and saying, 'We've got to back. Please take me back there'" to the dome.

After making some schedule changes, Valentine cleared the way for him and Reddy to take Alvin back to several sites in 2007. This work also set the stage for a follow-up study in September 2009, when the investigators returned to the domes with Alvin and the Autonomous Undersea Vehicle (AUV) Sentry to study the unique structures. They were joined by, among others, WHOI collaborators Dana Yoerger, Richard Camilli and Robert K. Nelson and Oscar Pizarro, now at the University of Sydney.

"With that combination, we were able to go in and do very detailed mapping of the site and very detailed sampling at the seafloor," Valentine said. Using mass spectrometers and radiocarbon dating in their respective laboratories, the scientists were able to confirm the nature and age of the domes.

"To me, as an oil-spill chemist, this was very exciting," said Reddy. "I got to find out what oil looks like after… 35,000 years."

What it looked like was "incredibly weathered," said Reddy. "That means nature had taken away a lot of compounds. These mounds of black material were the last remnants of oil that exploded up from below. To see nature doing this on its own was an unbelievable finding."

A few asphalt-like undersea structures have been reported, says Valentine, "but not anything exactly like these…no large structures like we see here." He estimates that the dome structures contain about 100,000 tons of residual asphalt and compares them to an underwater version of the La Brea Tar Pits in Los Angeles, complete with the fossils of ancient animals.

The researchers are not sure exactly why sea life has taken up residence around the asphalt domes, but one possibility is that because the oil has become benign over the years that some creatures are able to actually feed off it and get energy from it. They may also be "thriving" on tiny holes in the dome areas that release minute amounts of methane gas, Reddy says.

The scientists plan to continue studying the domed structures. "We have some very fundamental questions that remain," Valentine says. "It would be nice to know what is going on deep down under these things.

"One future direction is to try and actually drill into them," he says. "We also need to turn it over to some geologists to figure out where this oil is really coming from. More fundamentally, we're going to look at the actual degradation of the oil by microorganisms and maybe even see what organisms are trapped in this…very much like the La Brea Tar Pits."

From a chemical point of view, Reddy says he will continue to probe the question of exactly which of the chemicals that make up the domes "stayed around" all these years.

"Instead of this taking place at a refinery, nature used a variety of its own tools," he said, to manufacture the asphalt substance. With some heating and a few chemical tweaks, he added, this is essentially the same material that paves highways and parking lots. After all, it is California.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>