Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI Helps Form International Consortium on Iron and the Oceans

24.02.2011
With a mission of exploring the potential impact of iron fertilization of the oceans to reduce the amount of carbon dioxide (CO2) in the Earth’s atmosphere, Woods Hole Oceanographic Institution (WHOI) Senior Scientist Ken Buesseler has helped lead the organization of an international consortium to plan, promote and undertake advanced research in that field.

The origin of the group stems from a July 2010 workshop sponsored by WHOI, where Buesseler and Co-Chair Richard Lampitt of the National Oceanography Centre in the UK were joined by WHOI Senior Scientist Dennis McGillicuddy and others to explore the motivation for further ocean iron fertilization (OIF) research and develop the ISIS (in situ iron studies) mission, http://isisconsortium.org/workshop.

The ISIS Consortium—a collection of 12 universities and research centers from around the world—formally begins its work Feb. 22. ISIS is “a group of institutions and scientists who are motivated to answer the unknowns regarding the role of iron in regulating the ocean’s capacity to remove atmospheric carbon dioxide,” the group says on its new website, isisconsortium.org. “One approach to improve our understanding is to conduct open ocean iron fertilization experiments (both in situ and with carefully designed numerical experiments) which allow scientists to study the impact of iron on marine ecosystems and to quantify its potential for CO2 removal.”

Consortium members have signed a Memorandum of Understanding that recommends the support of open experiments and the independence of each participant. The group says it “will follow internationally accepted practices regulating ocean iron fertilization research being developed under the London Convention/London Protocol.” It is expected that the Consortium will grow to include additional scientists and their institutions, Buesseler said, and that non-Consortium members will be involved in ISIS related activities.

Iron fertilization to this point has been done mainly in research projects aimed at testing its effectiveness to stimulate plankton growth in limited areas of the ocean. It involves adding iron—usually chemical-grade iron sulfate—to an area of the sea in an effort to promote the growth of plankton, which, through photosynthesis, use CO2 from the surface to produce organic carbon, a small fraction of which sinks and eventually can carry carbon to the depths of the ocean and keep it there for decades to centuries.

Fourteen previous open ocean experiments have been conducted since 1993 at scales of up to 15 kilometers across. The ISIS group hopes to conduct tests on larger scales of up to several hundred km across, deploying more numerous and diverse instruments and leveraging the power of supercomputers to help design the experiments.

Buesseler studies the transport and fate of organic carbon in the ocean. His lab has participated in two US ocean iron fertilization experiments (FeEXII, SOFeX) and with New Zealand scientists in the first Southern Ocean iron experiment (SOIREE). He has also been active in organizing meetings to discuss OIF among scientists, policy makers, economists, public groups, and the agencies that fund OIF research and bringing the topic of the ocean carbon cycle and the importance of iron to broader audiences.

Ocean fertilization has not been without its detractors. Some opponents cite environmental concerns from “geo-engineering” the ocean, while others say it could distract from efforts to reduce industry-related carbon emissions into the atmosphere.

“We’re not ready to geo-engineer,” Buesseler said, adding it is important to remember that “the experiments themselves do not pose a significant hazard to the environment.” Buesseler emphasizes the organization’s aim is “to address the efficiency of iron fertilization and the impact of iron on the ecosystem. The goal is for longer and larger research—using gliders, floats, remote sensing—to monitor months and years of studies.“

The consortium plans to launch programs within national government agencies and raise both public and potentially private funds from donors to organize, plan studies and ultimately finance experiments. A comprehensive program could total between $100 million and $200 million. Past, smaller-scale tests have ranged from $10 million to $15 million per experiment, Buesseler said.

He stressed that the motivation for the project is to learn more about the feasibility of ocean iron fertilization. “ISIS was formed to promote international scientific appraisal of OIF impacts, intended and unintended, and the ability to sequester carbon and thus impact atmospheric CO2,” he said.

“We’re launching this project with the hope that we can build progress in the U.S., Europe, New Zealand, Australia, and Asia. We are far short of knowledge to endorse geo-engineering the ocean, but it is timely and appropriate to learn more.

“Without good science, governments or corporations might move ahead with geo-engineering projects prematurely, particularly as carbon markets develop or climate change threats become more serious. We need to be working now, to ensure that we know potential impacts and consequences.”

Projects like ocean iron fertilization may be important to augment other efforts to cut back on carbon dioxide emissions, Buesseler said. “Even if we were to stop emitting CO2 into the atmosphere [from industrial sources] it would take 1,000 years to substantially reduce CO2 levels” because of CO2’s long lifetime in the atmosphere, he said. “Most excess atmospheric CO2 will eventually end up at the bottom of the ocean anyway,” Buesseler said. “Our objective is to see whether it makes sense to accelerate that natural process.”

The initial 12 ISIS Consortium member institutions and scientists on the ISIS Scientific Steering Committee are:

Antarctic Climate and Ecosystems Cooperative Research Centre, Australia—Tom Trull

National Oceanography Centre, United Kingdom—Richard Lampitt

Moss Landing Marine Laboratories—Kenneth Coale

Netherlands Institute for Sea Research—Hein de Baar

School of Ocean and Earth Science and Technology, University of Hawaii—Dave Karl

University of Illinois at Urbana-Champaign—Don Wuebbles

University of Maine—Fei Chai

University of Massachusetts Boston—Meng Zhou

University of Plymouth, Marine Institute—Maeve Lohan

University of Rhode Island—Lew Rothstein

Woods Hole Oceanographic Institution—Ken Buesseler

Xiamen University, China—Minhan Dai

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

media relations | Newswise Science News
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>