Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI Helps Form International Consortium on Iron and the Oceans

24.02.2011
With a mission of exploring the potential impact of iron fertilization of the oceans to reduce the amount of carbon dioxide (CO2) in the Earth’s atmosphere, Woods Hole Oceanographic Institution (WHOI) Senior Scientist Ken Buesseler has helped lead the organization of an international consortium to plan, promote and undertake advanced research in that field.

The origin of the group stems from a July 2010 workshop sponsored by WHOI, where Buesseler and Co-Chair Richard Lampitt of the National Oceanography Centre in the UK were joined by WHOI Senior Scientist Dennis McGillicuddy and others to explore the motivation for further ocean iron fertilization (OIF) research and develop the ISIS (in situ iron studies) mission, http://isisconsortium.org/workshop.

The ISIS Consortium—a collection of 12 universities and research centers from around the world—formally begins its work Feb. 22. ISIS is “a group of institutions and scientists who are motivated to answer the unknowns regarding the role of iron in regulating the ocean’s capacity to remove atmospheric carbon dioxide,” the group says on its new website, isisconsortium.org. “One approach to improve our understanding is to conduct open ocean iron fertilization experiments (both in situ and with carefully designed numerical experiments) which allow scientists to study the impact of iron on marine ecosystems and to quantify its potential for CO2 removal.”

Consortium members have signed a Memorandum of Understanding that recommends the support of open experiments and the independence of each participant. The group says it “will follow internationally accepted practices regulating ocean iron fertilization research being developed under the London Convention/London Protocol.” It is expected that the Consortium will grow to include additional scientists and their institutions, Buesseler said, and that non-Consortium members will be involved in ISIS related activities.

Iron fertilization to this point has been done mainly in research projects aimed at testing its effectiveness to stimulate plankton growth in limited areas of the ocean. It involves adding iron—usually chemical-grade iron sulfate—to an area of the sea in an effort to promote the growth of plankton, which, through photosynthesis, use CO2 from the surface to produce organic carbon, a small fraction of which sinks and eventually can carry carbon to the depths of the ocean and keep it there for decades to centuries.

Fourteen previous open ocean experiments have been conducted since 1993 at scales of up to 15 kilometers across. The ISIS group hopes to conduct tests on larger scales of up to several hundred km across, deploying more numerous and diverse instruments and leveraging the power of supercomputers to help design the experiments.

Buesseler studies the transport and fate of organic carbon in the ocean. His lab has participated in two US ocean iron fertilization experiments (FeEXII, SOFeX) and with New Zealand scientists in the first Southern Ocean iron experiment (SOIREE). He has also been active in organizing meetings to discuss OIF among scientists, policy makers, economists, public groups, and the agencies that fund OIF research and bringing the topic of the ocean carbon cycle and the importance of iron to broader audiences.

Ocean fertilization has not been without its detractors. Some opponents cite environmental concerns from “geo-engineering” the ocean, while others say it could distract from efforts to reduce industry-related carbon emissions into the atmosphere.

“We’re not ready to geo-engineer,” Buesseler said, adding it is important to remember that “the experiments themselves do not pose a significant hazard to the environment.” Buesseler emphasizes the organization’s aim is “to address the efficiency of iron fertilization and the impact of iron on the ecosystem. The goal is for longer and larger research—using gliders, floats, remote sensing—to monitor months and years of studies.“

The consortium plans to launch programs within national government agencies and raise both public and potentially private funds from donors to organize, plan studies and ultimately finance experiments. A comprehensive program could total between $100 million and $200 million. Past, smaller-scale tests have ranged from $10 million to $15 million per experiment, Buesseler said.

He stressed that the motivation for the project is to learn more about the feasibility of ocean iron fertilization. “ISIS was formed to promote international scientific appraisal of OIF impacts, intended and unintended, and the ability to sequester carbon and thus impact atmospheric CO2,” he said.

“We’re launching this project with the hope that we can build progress in the U.S., Europe, New Zealand, Australia, and Asia. We are far short of knowledge to endorse geo-engineering the ocean, but it is timely and appropriate to learn more.

“Without good science, governments or corporations might move ahead with geo-engineering projects prematurely, particularly as carbon markets develop or climate change threats become more serious. We need to be working now, to ensure that we know potential impacts and consequences.”

Projects like ocean iron fertilization may be important to augment other efforts to cut back on carbon dioxide emissions, Buesseler said. “Even if we were to stop emitting CO2 into the atmosphere [from industrial sources] it would take 1,000 years to substantially reduce CO2 levels” because of CO2’s long lifetime in the atmosphere, he said. “Most excess atmospheric CO2 will eventually end up at the bottom of the ocean anyway,” Buesseler said. “Our objective is to see whether it makes sense to accelerate that natural process.”

The initial 12 ISIS Consortium member institutions and scientists on the ISIS Scientific Steering Committee are:

Antarctic Climate and Ecosystems Cooperative Research Centre, Australia—Tom Trull

National Oceanography Centre, United Kingdom—Richard Lampitt

Moss Landing Marine Laboratories—Kenneth Coale

Netherlands Institute for Sea Research—Hein de Baar

School of Ocean and Earth Science and Technology, University of Hawaii—Dave Karl

University of Illinois at Urbana-Champaign—Don Wuebbles

University of Maine—Fei Chai

University of Massachusetts Boston—Meng Zhou

University of Plymouth, Marine Institute—Maeve Lohan

University of Rhode Island—Lew Rothstein

Woods Hole Oceanographic Institution—Ken Buesseler

Xiamen University, China—Minhan Dai

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

media relations | Newswise Science News
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>