Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI Helps Form International Consortium on Iron and the Oceans

24.02.2011
With a mission of exploring the potential impact of iron fertilization of the oceans to reduce the amount of carbon dioxide (CO2) in the Earth’s atmosphere, Woods Hole Oceanographic Institution (WHOI) Senior Scientist Ken Buesseler has helped lead the organization of an international consortium to plan, promote and undertake advanced research in that field.

The origin of the group stems from a July 2010 workshop sponsored by WHOI, where Buesseler and Co-Chair Richard Lampitt of the National Oceanography Centre in the UK were joined by WHOI Senior Scientist Dennis McGillicuddy and others to explore the motivation for further ocean iron fertilization (OIF) research and develop the ISIS (in situ iron studies) mission, http://isisconsortium.org/workshop.

The ISIS Consortium—a collection of 12 universities and research centers from around the world—formally begins its work Feb. 22. ISIS is “a group of institutions and scientists who are motivated to answer the unknowns regarding the role of iron in regulating the ocean’s capacity to remove atmospheric carbon dioxide,” the group says on its new website, isisconsortium.org. “One approach to improve our understanding is to conduct open ocean iron fertilization experiments (both in situ and with carefully designed numerical experiments) which allow scientists to study the impact of iron on marine ecosystems and to quantify its potential for CO2 removal.”

Consortium members have signed a Memorandum of Understanding that recommends the support of open experiments and the independence of each participant. The group says it “will follow internationally accepted practices regulating ocean iron fertilization research being developed under the London Convention/London Protocol.” It is expected that the Consortium will grow to include additional scientists and their institutions, Buesseler said, and that non-Consortium members will be involved in ISIS related activities.

Iron fertilization to this point has been done mainly in research projects aimed at testing its effectiveness to stimulate plankton growth in limited areas of the ocean. It involves adding iron—usually chemical-grade iron sulfate—to an area of the sea in an effort to promote the growth of plankton, which, through photosynthesis, use CO2 from the surface to produce organic carbon, a small fraction of which sinks and eventually can carry carbon to the depths of the ocean and keep it there for decades to centuries.

Fourteen previous open ocean experiments have been conducted since 1993 at scales of up to 15 kilometers across. The ISIS group hopes to conduct tests on larger scales of up to several hundred km across, deploying more numerous and diverse instruments and leveraging the power of supercomputers to help design the experiments.

Buesseler studies the transport and fate of organic carbon in the ocean. His lab has participated in two US ocean iron fertilization experiments (FeEXII, SOFeX) and with New Zealand scientists in the first Southern Ocean iron experiment (SOIREE). He has also been active in organizing meetings to discuss OIF among scientists, policy makers, economists, public groups, and the agencies that fund OIF research and bringing the topic of the ocean carbon cycle and the importance of iron to broader audiences.

Ocean fertilization has not been without its detractors. Some opponents cite environmental concerns from “geo-engineering” the ocean, while others say it could distract from efforts to reduce industry-related carbon emissions into the atmosphere.

“We’re not ready to geo-engineer,” Buesseler said, adding it is important to remember that “the experiments themselves do not pose a significant hazard to the environment.” Buesseler emphasizes the organization’s aim is “to address the efficiency of iron fertilization and the impact of iron on the ecosystem. The goal is for longer and larger research—using gliders, floats, remote sensing—to monitor months and years of studies.“

The consortium plans to launch programs within national government agencies and raise both public and potentially private funds from donors to organize, plan studies and ultimately finance experiments. A comprehensive program could total between $100 million and $200 million. Past, smaller-scale tests have ranged from $10 million to $15 million per experiment, Buesseler said.

He stressed that the motivation for the project is to learn more about the feasibility of ocean iron fertilization. “ISIS was formed to promote international scientific appraisal of OIF impacts, intended and unintended, and the ability to sequester carbon and thus impact atmospheric CO2,” he said.

“We’re launching this project with the hope that we can build progress in the U.S., Europe, New Zealand, Australia, and Asia. We are far short of knowledge to endorse geo-engineering the ocean, but it is timely and appropriate to learn more.

“Without good science, governments or corporations might move ahead with geo-engineering projects prematurely, particularly as carbon markets develop or climate change threats become more serious. We need to be working now, to ensure that we know potential impacts and consequences.”

Projects like ocean iron fertilization may be important to augment other efforts to cut back on carbon dioxide emissions, Buesseler said. “Even if we were to stop emitting CO2 into the atmosphere [from industrial sources] it would take 1,000 years to substantially reduce CO2 levels” because of CO2’s long lifetime in the atmosphere, he said. “Most excess atmospheric CO2 will eventually end up at the bottom of the ocean anyway,” Buesseler said. “Our objective is to see whether it makes sense to accelerate that natural process.”

The initial 12 ISIS Consortium member institutions and scientists on the ISIS Scientific Steering Committee are:

Antarctic Climate and Ecosystems Cooperative Research Centre, Australia—Tom Trull

National Oceanography Centre, United Kingdom—Richard Lampitt

Moss Landing Marine Laboratories—Kenneth Coale

Netherlands Institute for Sea Research—Hein de Baar

School of Ocean and Earth Science and Technology, University of Hawaii—Dave Karl

University of Illinois at Urbana-Champaign—Don Wuebbles

University of Maine—Fei Chai

University of Massachusetts Boston—Meng Zhou

University of Plymouth, Marine Institute—Maeve Lohan

University of Rhode Island—Lew Rothstein

Woods Hole Oceanographic Institution—Ken Buesseler

Xiamen University, China—Minhan Dai

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

media relations | Newswise Science News
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>