Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What would it take to limit climate change to 1.5°C?

21.05.2015

A new study analyzes the required climate policy actions and targets in order to limit future global temperature rise to less than 1.5 degrees Celsius by 2100. This level is supported by more than 100 countries worldwide, including those most vulnerable to climate change, as a safer goal than the currently agreed international aim of 2 degrees Celsius – an aim which would already imply substantial greenhouse-gas reductions. Hence the interest for scrutinizing the very low end of greenhouse-gas stabilization scenarios.

Limiting temperature rise by 2100 to less than 1.5 degrees Celsius is feasible, at least from a purely technological standpoint, according to the study published in the journal Nature Climate Change by researchers at the International Institute for Applied Systems Analysis (IIASA), the Potsdam Institute for Climate Impact Research (PIK), and others.

The new study examines scenarios for the energy, economy, and environment that are consistent with limiting climate change to 1.5 degrees Celsius above pre-industrial levels, and compares them to scenarios for limiting climate change to 2 degrees Celsius.

“Actions for returning global warming to below 1.5 degrees Celsius by 2100 are in many ways similar to those limiting warming to below 2 degrees Celsius,” says IIASA researcher Joeri Rogelj, one of the lead authors of the study. “However, the more ambitious 1.5 degrees Celsius goal leaves no space to further delay global mitigation action and emission reductions need to scale up swiftly in the next decades.”

The authors note, however, that the economic, political, and technological requirements to meet even the 2 degrees Celsius target are substantial. In the run-up to climate negotiations in December 2015, such information is important for policymakers considering long-term goals and steps to achieve these goals.

Key elements: accelerated energy efficiency gains and CO2 removal

The study identifies key elements that would need to be in place in order to reach the 1.5 degrees Celsius target by 2100. One fundamental feature is the tight constraint on future carbon emissions.

“In 1.5 degrees Celsius scenarios, the remaining carbon budget for the 21st century is reduced to almost half compared to 2 degrees Celsius scenarios,” explains PIK researcher Gunnar Luderer, who co-led the study. “As a consequence, deeper emissions cuts are required from all sectors, and global carbon neutrality would need to be reached 10-20 years earlier than projected for 2 degrees Celsius scenarios.”

Faster improvements in energy efficiency also emerge as a key enabling factor for the 1.5 degrees Celsius target. In addition, all the scenarios show that at some point in this century, carbon emissions would have to become negative at a global scale. That means that significant amounts of CO2 would need to be actively removed from the atmosphere. This could occur through technological solutions such as bioenergy use combined with carbon capture and storage - a technology that remains untested on a large scale, increases the pressure on food supply systems and in some cases lacks social acceptance - or through efforts to grow more forests, sequestering carbon in tree trunks and branches. Afforestation, however, just like bioenergy plantations, would have to be carefully balanced against land use requirements for food production.

Overshooting the limit - and declining to 2100

In contrast to many scenarios examined in recent research, which set 2 degrees Celsius as the absolute limit and do not allow temperature to overshoot the target, the current set of scenarios looks at a long term goal, and what would need to happen to get temperature back down to that level by 2100.

“Basically all our 1.5 degrees Celsius scenarios first exceed the 1.5 degrees Celsius temperature threshold somewhere in mid-century,” explains Rogelj, “before declining to 2100 and beyond as more and more carbon dioxide is actively removed from the atmosphere by specialized technologies.”

The recent IPCC fifth assessment report did not describe in detail the critical needs for how to limit warming to below 1.5 degrees Celsius as the scenarios available to them did not allow for an in-depth analysis. Yet over 100 countries worldwide - over half of the countries in the United Nations Framework Convention on Climate Change (UNFCCC), including the Alliance of Small Island States (AOSIS) and the Least-Developed Countries (LDCs) - have declared their support for a 1.5 degrees Celsius target on climate change. The target itself is also up for debate at the upcoming climate negotiations. This new study fills this gap.

The authors make clear that an increase of international efforts to curb greenhouse gases is imperative to keep the 1.5 degrees Celsius target achievable.

“The 1.5 degrees Celsius target leaves very little leeway,” says Luderer. “Any imperfections - be it a further delay of meaningful policy action, or a failure to achieve negative emissions at large scale - will make the 1.5 degrees Celsius target unattainable during this century.”

Article: Rogelj, J., Luderer, G., Pietzcker, R.C., Kriegler, E., Schaeffer, M., Krey, V., Riahi, K. (2015): Energy system transformations for limiting end-of-century warming to below 1.5°C. Nature Climate Change [DOI: 10.1038/NCLIMATE2572]

Weblink to the article once it is published: http://dx.doi.org/10.1038/NCLIMATE2572

For further information please contact:

Jonas Viering, Sarah Messina, Mareike Schodder
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Katherine Leitzell
IIASA Press Office
Phone: +43 2236 807 316
Mob: +43 676 83 807 316
E-Mail: leitzell@iiasa.ac.at

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>