Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What would a tsunami in the Mediterranean look like?

27.08.2015

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African plate slides underneath the Eurasian plate. About 10% of all tsunamis worldwide happen in the Mediterranean, with on average, one large tsunami happening in the region once a century.


Sicily tsunami animation

Samaras et al., Ocean Science, 2015


Crete tsunami animation

Samaras et al., Ocean Science, 2015

The risk to coastal areas is high because of the high population density in the area – some 130 million people live along the sea’s coastline. Moreover, tsunami waves in the Mediterranean need to travel only a very short distance before hitting the coast, reaching it with little advance warning.

The new study shows the extent of flooding in selected areas along the coasts of southern Italy and Greece, if hit by large tsunamis in the region, and could help local authorities identify vulnerable areas.

“The main gap in relevant knowledge in tsunami modelling is what happens when tsunami waves approach the nearshore and run inland,” says Achilleas Samaras, the lead author of the study and a researcher at the University of Bologna in Italy.

The nearshore is the zone where waves transform – becoming steeper and changing their propagation direction – as they propagate over shallow water close to the shore. “We wanted to find out how coastal areas would be affected by tsunamis in a region that is not only the most active in the Mediterranean in terms of seismicity and tectonic movements, but has also experienced numerous tsunami events in the past.”

The team developed a computer model to represent how tsunamis in the Mediterranean could form, propagate and hit the coast, using information about the seafloor depth, shoreline and topography. “We simulate tsunami generation by introducing earthquake-generated displacements at either the sea bed or the surface,” explains Samaras. “The model then simulates how these disturbances – the tsunami waves – propagate and are transformed as they reach the nearshore and inundate coastal areas.”

As detailed in the Ocean Science study, the team applied their model to tsunamis generated by earthquakes of approximately M7.0 magnitude off the coasts of eastern Sicily and southern Crete. Results show that, in both cases, the tsunamis would inundate the low-lying coastal areas up to approximately 5 metres above sea level. The effects would be more severe for Crete where some 3.5 square kilometres of land would be under water.

“Due to the complexity of the studied phenomena, one should not arbitrarily extend the validity of the presented results by assuming that a tsunami with a magnitude at generation five times larger, for example, would result in an inundation area five times larger,” cautions Samaras. “It is reasonable, however, to consider such results as indicative of how different areas in each region would be affected by larger events.”

“Although the simulated earthquake-induced tsunamis are not small, there has been a recorded history of significantly larger events, in terms of earthquake magnitude and mainshock areas, taking place in the region,” says Samaras.

For example, a clustering of earthquakes, the largest with magnitude between 8.0 and 8.5, hit off the coast of Crete in 365 AD. The resulting tsunami destroyed ancient cities in Greece, Italy and Egypt, killing some 5000 people in Alexandria alone. More recently, an earthquake of magnitude of about 7.0 hit the Messina region in Italy in 1908, causing a tsunami that killed thousands, with observed waves locally exceeding 10 metres in height.

The team sees the results as a starting point for a more detailed assessment of coastal flooding risk and mitigation along the coasts of the Eastern Mediterranean. “Our simulations could be used to help public authorities and policy makers create a comprehensive database of tsunami scenarios in the Mediterranean, identify vulnerable coastal regions for each scenario, and properly plan their defence.”


Please mention the name of the publication (Ocean Science) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.ocean-science.net).

MORE INFORMATION
This research is presented in the paper ‘Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean’ to appear in the EGU open access journal Ocean Science on 27 August 2015.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.ocean-sci.net/recent_papers.html. *A pre-print version of the paper (and accompanying images and animations) is available for download at https://www.egu.eu/news/190/what-would-a-tsunami-in-the-mediterranean-look-like/.

Citation: TBA

The team is composed of A. G. Samaras (Interdepartmental Centre for Industrial Research in Building and Construction [CIRI-EC], Fluid Dynamics Unit, University of Bologna, Italy), Th. V. Karambas (Department of Civil Engineering, Aristotle University of Thessaloniki, Greece) and R. Archetti (Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Italy).

The European Geosciences Union (EGU, http://www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide.It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2016 General Assembly is taking place in Vienna, Austria, from 17 to 22 April 2016. For information about meeting and press registration, please check http://media.egu.eu closer to the time of the conference, or follow the EGU on Twitter (https://twitter.com/EuroGeosciences) and Facebook (https://www.facebook.com/EuropeanGeosciencesUnion).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Ocean Science (OS, http://ocean-science.net/) is an international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.

CONTACT
Achilleas Samaras
Research Fellow
University of Bologna, Italy
Tel: +39-05120-90551
Email: achilleas.samaras@unibo.it
Skype: achilleas.samaras

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
EGU on Twitter: @EuroGeosciences

Weitere Informationen:

https://www.egu.eu/news/190/what-would-a-tsunami-in-the-mediterranean-look-like/
http://www.ocean-science.net

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>