Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetland enhancement in Midwest could help reduce catastrophic floods of the future

17.03.2016

According to a new study from Oregon State University, restoration of wetlands in the Midwest has the potential to significantly reduce peak river flows during floods -- not only now, but also in the future if heavy rains continue to increase in intensity.

Wetland restoration could also provide a small step toward a hydrologic regime in this region that more closely resembles its historic nature, before roads and cities were constructed, forests were lost, and millions of acres tile-drained to increase agricultural production.


Riverine wetlands such as these in northwest Iowa used to be commonplace across much of the Midwest, but millions of acres of them have disappeared since European settlement.

(Photo courtesy of the USDA Natural Resources conservation Service)

An evaluation of potential wetlands in one watershed in central Indiana found that if just 1.5 percent of the land were used for wetlands, the peak flow of the overall watershed could be reduced by up to 17.5 percent. Also of importance, researchers said, is that expansion of wetlands appears to provide significant benefits across a wide range of possible climate scenarios.

The study was published in Ecological Engineering, in work supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

"Flood management in the Midwest is now almost entirely concentrated on use of dams and levees," said Meghna Babbar-Sebens, an assistant professor of civil engineering in the College of Engineering, and the Eric H.I. and Janice Hoffman Faculty Scholar at OSU.

"Wetland construction or restoration could provide a natural and ecological option to help with flood concerns, and serve as an additional tool for flood management. Greater investments in this approach, or similar approaches that increase storage of water in the upper landscape of a watershed, should be seriously considered."

The new research considered not just the problem now - which is serious -- but what the future may bring.

The study used climate models supported by the North American Regional Climate Change Assessment Program, along with a hydrology model to examine the impact of wetlands during the climate scenarios for a mid-century period from 2041 to 2070. It suggests this central Indiana region could see continued increases in extreme events, such as more extremely hot days during summer and more heavy rain in the wettest 5-day periods.

"There's some variation in the models, but there's general agreement that the future will bring more heavy precipitation events," Babbar-Sebens said. "How we transfer and store runoff on the landscape is going to become even more critical."

"From the perspective of a decision maker, an advantage of wetland construction is that it would significantly reduce flooding from heavy precipitation in almost every possible scenario. Wetlands are consistently effective."

An obstacle at this point, she said, is that many incentive programs that support wetland restoration and creation usually focus on ecology, wildlife enhancement and water quality issues - and there are limited funding mechanisms to create upland wetlands for flood management. This limits the economic incentives for farmers and landowners to set aside room for wetlands, especially with the high price of agricultural crops.

New financial models and flood management policies would probably be needed to address this, Babbar-Sebens said.

Deforestation, agriculture and the historic growth of cities with impervious infrastructure have hugely changed the face of the Midwest and its hydrology, leading to frequent floods.

Climate change is now exacerbating that problem. In 2011, Indiana experienced record-breaking heat in seven counties, record-breaking rainfall in 22 counties, and record-breaking snowfall in six counties. The state has been declared a flood disaster area 14 times between 2000 and 2011, compared to only four times in the decade prior to that.

The great Mississippi River flood of 2011 was considered a "500-year event" and caused $2.8 billion in damage. It flooded more than 21,000 homes and businesses and 1.2 million acres of agricultural land, according to a report from the U.S. Army Corps of Engineers.

Wetlands help reduce some of these flooding problems by storing water away from stream channels and releasing it more slowly, while also improving water quality and providing wildlife habitat. Other studies have shown that wetland construction in the Mississippi-Ohio-Missouri river basins could also significantly reduce nitrogen loads in the rivers, which has led to an enormous "dead zone" in the Gulf of Mexico.

A methodology for evaluating wetlands with respect to historic climate and future climate scenarios, created in this research, should be applicable to other watersheds in the Midwest, researchers said.

Media Contact

Meghna Babbar-Sebens
meghna@oregonstate.edu
541-737-8536

 @oregonstatenews

http://www.orst.edu 

Meghna Babbar-Sebens | EurekAlert!

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>