Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Antarctic ice comes and goes, rapidly

20.03.2009
Researchers today worry about the collapse of West Antarctic ice shelves and loss of the West Antarctic ice sheet, but little is known about the past movements of this ice.

Now climatologists from Penn State and the University of Massachusetts have modeled the past 5 million years of the West Antarctic ice sheet and found the ice expanse changes rapidly and is most influenced by ocean temperatures near the continent.

"We found that the West Antarctic ice sheet varied a lot, collapsed and regrew multiple times over that period," said David Pollard, senior scientist, Penn State's College of Earth and Mineral Sciences' Earth and Environmental Systems Institute. "The ice sheets in our model changed in ways that agree well with the data collected by the ANDRILL project."

Pollard and Robert M. DeConto, professor of climatology, U. Mass, report their findings in today's (Mar. 19) issue of Nature. The results of the first ANDRILL drill core near McMurdo Station, Antarctica, are reported in a companion paper in the same issue. The ANtarctic geological DRILLing project is a multinational collaboration to drill back in time into sediment to recover a history of paleoenvironmental changes.

"We found, as expected, that the East Antarctic ice sheet is stable and did not change," said Pollard.

The East Antarctic ice sheet does not slide into the sea and melt away because most of the bedrock below East Antarctic ice is above sea level. However, on the other side of the continent, to the Pacific side of the Transantarctic Mountain Range, much of the bedrock below the ice lies from several hundred to several thousand feet below sea level, leaving the West Antarctic ice vulnerable to melting.

"We found that the ocean's warming and melting the bottom of the floating ice shelves has been the dominant control on West Antarctic ice variations," said Pollard.

When the floating ice shelves melt sufficiently, they no longer buttress the grounded ice upstream, which then flows faster and rapidly drains the massive interior ice. The grounding line, the junction between the floating ice shelf and upstream ice resting on bedrock, retreats converting more grounded ice to floating ice shelves. Eventually, nearly all of the ice sheet on the Pacific side of Antarctica can disappear as it has in the past.

The researchers' computer model needs past variations of snowfall, snow melt and ocean melting below the floating ice to be specified. These are not obtained from the General Circulation Models often used in climate reconstruction because running those models to create 5 million years of climate history would take years. Instead, the researchers related past variations of these quantities to records of deep sea oxygen isotope ratios that indicate temperature changes in the oceans.

"We assume this is all driven by global-scale climate variations including Northern Hemispheric glacial cycles, so we used the changes in the oxygen 18 record to deduce the Antarctic changes," says Pollard. "Our next step will be to test whether this record really represents sea temperatures around Antarctica."

The researchers compared their model's output with the sediment core record from ANDRILL. In these cores, coarse pebbly glacial till represent the glacial periods, while intervals filled with the shells of tiny ocean-living diatoms represent the nonglacial periods. One way the ANDRILL researchers date the layers is using existing datable volcanic layers within the core.

Pollard and DeConto not only looked at the modeling of the overall West Antarctic ice sheet, they also looked at the nearest grid point in their model to the ANDRILL drilling location. They found that, for the most part, the data trend at that grid point matched the data obtained from the sediment core.

"Our modeling extends the reach of the drilling data to justify that the data represent the entire West Antarctic area and not just the spot where they drilled," said Pollard.

Along with the rapid appearance and disappearance of the ice, the researchers noted that both in the ANDRILL record and the model results, during the early portion of the 5 million years, the periodicity of the glaciation and melting was about 40,000 years which matches the Northern Hemisphere's pattern of glaciation and glacier retreat. The basic driver is very likely the tilt of the Earth's axis which varies with the same period, according to Pollard. However, nearer to the present, the cycle time increased to about 100,000 years as expected, driven by Northern Hemispheric ice age cycles.

During past warm periods, the major collapses in the model take a few thousand years. This is also the expected time scale of future collapse of the West Antarctic ice sheet if ocean temperatures warm sufficiently – longer than a few centuries but shorter than ten thousand years.

The researchers note that when atmospheric carbon dioxide levels in the past were about 400 parts per million, in the early part of the ANDRILL record, West Antarctic ice sheet collapses were much more frequent..

"We are a little below 400 parts per million now and heading higher," says Pollard. "One of the next steps is to determine if human activity will make it warm enough to start the collapse."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>