Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using water to understand human society – from the industrial revolution to global trade

26.11.2008
Water shapes societies, but it is a factor only just beginning to be appreciated by social scientists.

The Norwegian professor, writer and film maker Terje Tvedt, of the Universities of Oslo and Bergen, argues that water has played a unique and fundamental role in shaping societies throughout human history.

Speaking at a European Science Foundation and COST conference in Sicily in October, Tvedt proposed that social scientists and historians have long made a serious error by not taking natural resources into account in their attempts to understand social structures.

Water, according to Tvedt, is a unique natural resource for two reasons. First, it is absolutely essential for all societies, because we cannot live without it. Secondly, it is always the same. Whatever you do with water on the surface of the Earth, it reemerges. “You can destroy or create rivers and lakes,” he says, “but you cannot destroy water itself.”

How rivers shaped industry

Tvedt used the example of the industrial revolution to show how water can help to understand human history. Historians have proposed two contrasting theories to explain why the industrial revolution started in Europe, specifically in Britain, and not in China, India or Australia. They debate about whether it is because of specific political ideologies and social structures in Europe at the time, or due to the unequal relationship that already existed between Europe and the rest of the world, through slavery and colonialism. The two theories can be termed exceptionalism and exploitation, respectively.

But according to Tvedt, the structure of the water system can adequately explain why the industrial revolution began in Britain. The early industrial revolution was enabled by the power of water mills, and bulk transport of goods by canal. Britain’s rivers were perfect for both things. They provided a good network across the country. All are fairly close to the sea, with good flows throughout the year and not too much silt. Elsewhere in the world, rivers were too silty, too large and uncontrollable, all flowing in the same direction or had flows that were too seasonally variable.

The exclusion of nature from our understanding of society is not a benign, academic problem. “Since World War II, the dominant theories relating to the international aid system have, without exception, disregarded the role of nature,” Tvedt says. “Modernisation theory has told us that all societies could develop modernism in the same way, if they just find the right economic instruments.” This, he argues, is simply not right.

Global water trade

Another speaker at the conference demonstrated how social scientists are now thinking analytically about natural resources. Maite M. Aldaya, from the University of Twente, in the Netherlands, presented the water footprint concept. The water footprint of a product (commodity, good or service) is the volume of freshwater used to produce the product, measured at the place where the product is actually produced. The water footprint for an individual, community or business is the total volume of freshwater used to produce the goods and services consumed by that individual or community or produced by that business. Water use is measured in terms of water volume consumed (evaporated) and/or polluted per unit of time.

Developed by Arjen Hoekstra, based on Tony Allan’s idea of virtual water, water footprints allow us to visualise the transfer of water that occurs during global trade.

The concept produces some shocking facts. The global trade in virtual water is about 1,600 billion cubic metres a year, equivalent to 16% of world water use. Australia, the driest inhabited continent on Earth, is one of the world’s largest exporters of virtual water, whilst northern hemisphere temperate areas such as northern Europe and Japan, where water is plentiful, are importers.

The water footprint concept is already being enshrined in national policies as a way of accounting for water use. “Spain has just approved a regulation that requires water footprint analysis in River Basin Management Plans, which Member States need to send to the European Commission regularly from 2009, according to the Water Framework Directive,” says Aldaya. “So it is now compulsory to calculate water footprints of the different socioeconomic sectors in Spain.”

Thomas Lau | alfa
Further information:
http://www.esf.org

Further reports about: Earth Global water trade Water natural resources social structure

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>