Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-rock reaction may provide enough hydrogen 'food' to sustain life in ocean's crust or on Mars

31.05.2013
A chemical reaction between iron-containing minerals and water may produce enough hydrogen "food" to sustain microbial communities living in pores and cracks within the enormous volume of rock below the ocean floor and parts of the continents, according to a new study led by the University of Colorado Boulder.

The findings, published in the journal Nature Geoscience, also hint at the possibility that hydrogen-dependent life could have existed where iron-rich igneous rocks on Mars were once in contact with water.

Scientists have thoroughly investigated how rock-water reactions can produce hydrogen in places where the temperatures are far too hot for living things to survive, such as in the rocks that underlie hydrothermal vent systems on the floor of the Atlantic Ocean. The hydrogen gases produced in those rocks do eventually feed microbial life, but the communities are located only in small, cooler oases where the vent fluids mix with seawater.

The new study, led by CU-Boulder Research Associate Lisa Mayhew, set out to investigate whether hydrogen-producing reactions also could take place in the much more abundant rocks that are infiltrated with water at temperatures cool enough for life to survive.

"Water-rock reactions that produce hydrogen gas are thought to have been one of the earliest sources of energy for life on Earth," said Mayhew, who worked on the study as a doctoral student in CU-Boulder Associate Professor Alexis Templeton's lab in the Department of Geological Sciences.

"However, we know very little about the possibility that hydrogen will be produced from these reactions when the temperatures are low enough that life can survive. If these reactions could make enough hydrogen at these low temperatures, then microorganisms might be able to live in the rocks where this reaction occurs, which could potentially be a huge subsurface microbial habitat for hydrogen-utilizing life."

When igneous rocks, which form when magma slowly cools deep within the Earth, are infiltrated by ocean water, some of the minerals release unstable atoms of iron into the water. At high temperatures — warmer than 392 degrees Fahrenheit — scientists know that the unstable atoms, known as reduced iron, can rapidly split water molecules and produce hydrogen gas, as well as new minerals containing iron in the more stable, oxidized form.

Mayhew and her co-authors, including Templeton, submerged rocks in water in the absence of oxygen to determine if a similar reaction would take place at much lower temperatures, between 122 and 212 degrees Fahrenheit. The researchers found that the rocks did create hydrogen — potentially enough hydrogen to support life.

To understand in more detail the chemical reactions that produced the hydrogen in the lab experiments, the researchers used "synchrotron radiation" — which is created by electrons orbiting in a manmade storage ring — to determine the type and location of iron in the rocks on a microscale.

The researchers expected to find that the reduced iron in minerals like olivine had converted to the more stable oxidized state, just as occurs at higher temperatures. But when they conducted their analyses at the Stanford Synchrotron Radiation Lightsource at Stanford University, they were surprised to find newly formed oxidized iron on "spinel" minerals found in the rocks. Spinels are minerals with a cubic structure that are highly conductive.

Finding oxidized iron on the spinels led the team to hypothesize that, at low temperatures, the conductive spinels were helping facilitate the exchange of electrons between reduced iron and water, a process that is necessary for the iron to split the water molecules and create the hydrogen gas.

"After observing the formation of oxidized iron on spinels, we realized there was a strong correlation between the amount of hydrogen produced and the volume percent of spinel phases in the reaction materials," Mayhew said. "Generally, the more spinels, the more hydrogen."

Not only is there a potentially large volume of rock on Earth that may undergo these low temperature reactions, but the same types of rocks also are prevalent on Mars, Mayhew said. Minerals that form as a result of the water-rock reactions on Earth have been detected on Mars as well, which means that the process described in the new study may have implications for potential Martian microbial habitats.

Mayhew and Templeton are already building on this study with their co-authors, including Thomas McCollom at CU-Boulder's Laboratory for Atmospheric and Space Physics, to see if the hydrogen-producing reactions can actually sustain microbes in the lab.

This study was funded by the David and Lucille Packard Foundation and with a U.S. Department of Energy Early Career grant to Templeton.

Lisa Mayhew | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>