Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water resources played important role in patterns of human settlement

01.12.2010
Once lost in the mists of time, the colonial hydrology of the northeastern United States has been reconstructed by a team of geoscientists, biological scientists and social scientists, including University of New Hampshire Ph.D. candidate Christopher Pastore.

The results, which extend as far back as the year 1600, appear in the current issue of the journal Environmental Science & Technology in the article "Tapping Environmental History to Recreate America's Colonial Hydrology." The findings provide a new way of uncovering the hydrology of the past and will lead to a better understanding of hydrologic systems now and in the future, the scientists say.

"We outline a methodology for synthesizing modern scientific data with historical records, including anecdotal sources," Pastore says, the paper's lead author. "It underscores the role of humans in an assessment of hydrologic change."

Throughout American history, water resources have played an integral role in shaping patterns of human settlement and networks of biological and economic exchange.

"The research emphasizes the effect of human activities on the evolution of watersheds and on the dynamics of ecosystems, important to water sustainability," says Thomas Torgersen, program director in National Science Foundation's Division of Earth Sciences, which funded the research.

The scientists divided their study area into three geographic and socio-political subregions: New England; the Middle Colonies; and the Chesapeake. They then looked at the ways in which physical variables--such as soil, vegetation, and climate--combined with socio-political factors to influence each subregion's hydrologic environment.

In New England, for example, close-knit religious communities with strong central governments concentrated their economic efforts on fur-trading and timber extraction, according to the paper's co-authors, which include Charles Vörösmarty of the City University of New York, principal investigator on the NSF grant. Vörösmarty is formerly the director of the Water Systems Analysis Group at the UNH Institute for the Study of Earth, Oceans, and Space.

The Chesapeake region, on the other hand, was settled largely by young, unskilled men who cleared trees and planted tobacco fencerow to fencerow. "This caused extensive erosion, which dramatically altered rivers," Pastore says.

The Middle Colonies were characterized by diverse social, cultural, and religious traditions and feudal-style estate agriculture.

Integration of human decision-making into analyses of land-cover change, engineering and climate change is fundamental to understanding subregional hydrologic patterns and how they interact, the scientists say.

They recommend two metrics for quantifying hydrologic change.

The first, which they call a simple water balance, takes into account precipitation, evapotranspiration, and water storage, which can be used to track changes in annual river discharge. The second, termed mean water residence time, or the average time a water molecule spends in one place, can also be used to calculate the amount of water moving through a system.

The resulting information helps determine past water residence times, which in turn allow scientists to infer changes in the biogeochemistry of rivers and streams.

Many pathogens, or disease-causing organisms, are linked to water flows. An understanding of historical water residence times, says Pastore, may lead to new insights into how diseases are transmitted today.

Our colonial past may be hydrologic prologue.

Other co-authors of the paper are: Mark Green of Plymouth State University; Daniel Bain of the University of Pittsburgh; Andrea Munoz-Hernandez of the City University of New York; Jennifer Arrigo of East Carolina University; Sara Brandt of the U.S. Geological Survey in Northborough, Mass.; Jonathan Duncan of the University of North Carolina at Chapel Hill; Francesca Greco of King's College, London; Hyojin Kim of the University of California at Berkeley; Sanjiv Kumar of Purdue University; Michael Lally of the University of Massachusetts at Amherst; Anthony Parolari of MIT; Brian Pellerin of the U.S. Geological Survey in Sacramento, Calif.; Nira Salant of Utah State University; Adam Schlosser of MIT; and Kate Zalzal of the University of Colorado at Boulder.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

JOURNAL ARTICLE

"Tapping Environmental History to Recreate America's Colonial Hydrology" http://pubs.acs.org/doi/pdf/10.1021/es102672c

PHOTOS

"The Lake of the Dismal Swamp," by John Gadsby Chapman, 1842.
Credit: Courtesy of the American Antiquarian Society http://nsf.gov/news/mmg/media/images/hydro_history1_h.jpg
Map showing the region of study broken down into socio-cultural subregions.
Credit: Graphic by Jonathan M. Duncan http://nsf.gov/news/mmg/media/images/hydro_history2_h.jpg
"View of the West Bank of the Hudson's River 3 Miles above Still Water," by Inigo Barlow, 1789.

Credit: Courtesy of the John Carter Brown Library at Brown University http://nsf.gov/news/mmg/media/images/hydro_history3_h.jpg

"Red Mill Fall (Opposite Albany)" by William Tolman Carlton, 1847-1849.
Credit: Courtesy of the American Antiquarian Society http://nsf.gov/news/mmg/media/images/hydro_history4_h1.jpg
"The American Beaver," by John James Audubon, in: The Quadrupeds of North America, 1854.

Credit: Courtesy of the American Antiquarian Society http://nsf.gov/news/mmg/media/images/hydro_history5_h.jpg

"View of the Oxbow," by Henry Woodward, 1859.
Credit: Courtesy of the American Antiquarian Society http://nsf.gov/news/mmg/media/images/hydro_history6_h.jpg

Christopher Pastore | EurekAlert!
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>