Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water on the Moon: It's Been There All Along

20.02.2013
Traces of water have been detected within the crystalline structure of mineral samples from the lunar highland upper crust obtained during the Apollo missions, according to a University of Michigan researcher and his colleagues.

The lunar highlands are thought to represent the original crust, crystallized from a magma ocean on a mostly molten early moon. The new findings indicate that the early moon was wet and that water there was not substantially lost during the moon's formation.

The results seem to contradict the predominant lunar formation theory—that the moon was formed from debris generated during a giant impact between Earth and another planetary body, approximately the size of Mars, according to U-M's Youxue Zhang and his colleagues.

"Because these are some of the oldest rocks from the moon, the water is inferred to have been in the moon when it formed," Zhang said. "That is somewhat difficult to explain with the current popular moon-formation model, in which the moon formed by collecting the hot ejecta as the result of a super-giant impact of a martian-size body with the proto-Earth.

"Under that model, the hot ejecta should have been degassed almost completely, eliminating all water."

A paper titled "Water in lunar anorthosites and evidence for a wet early moon" was published online Feb. 17 in the journal Nature Geoscience. The first author is Hejiu Hui, postdoctoral research associate of civil and environmental engineering and earth sciences at the University of Notre Dame. Hui received a doctorate at U-M under Zhang, a professor in the Department of Earth and Environmental Sciences and one of three co-authors of the Nature Geoscience paper.

Over the last five years, spacecraft observations and new lab measurements of Apollo lunar samples have overturned the long-held belief that the moon is bone-dry.

In 2008, laboratory measurement of Apollo lunar samples by ion microprobe detected indigenous hydrogen, inferred to be the water-related chemical species hydroxyl, in lunar volcanic glasses. In 2009, NASA's Lunar Crater Observation and Sensing satellite, known as LCROSS, slammed into a permanently shadowed lunar crater and ejected a plume of material that was surprisingly rich in water ice.

Hydroxyls have also been detected in other volcanic rocks and in the lunar regolith, the layer of fine powder and rock fragments that coats the lunar surface. Hydroxyls, which consist of one atom of hydrogen and one of oxygen, were also detected in the lunar anorthosite study reported in Nature Geoscience.

In the latest work, Fourier-transform infrared spectroscopy was used to analyze the water content in grains of plagioclase feldspar from lunar anorthosites, highland rocks composed of more than 90 percent plagioclase. The bright-colored highlands rocks are thought to have formed early in the moon's history when plagioclase crystallized from a magma ocean and floated to the surface.

The infrared spectroscopy work, which was conducted at Zhang's U-M lab and co-author Anne Peslier's lab, detected about 6 parts per million of water in the lunar anorthosites.

"The surprise discovery of this work is that in lunar rocks, even in nominally water-free minerals such as plagioclase feldspar, the water content can be detected," said Zhang, the James R. O'Neil Collegiate Professor of Geological Sciences.

"It's not 'liquid' water that was measured during these studies but hydroxyl groups distributed within the mineral grain," said Notre Dame's Hui. "We are able to detect those hydroxyl groups in the crystalline structure of the Apollo samples."

The hydroxyl groups the team detected are evidence that the lunar interior contained significant water during the moon's early molten state, before the crust solidified, and may have played a key role in the development of lunar basalts.

"The presence of water," said Hui, "could imply a more prolonged solidification of the lunar magma ocean than the once-popular anhydrous moon scenario suggests."

The researchers analyzed grains from ferroan anorthosites 15415 and 60015, as well as troctolite 76535. Ferroan anorthosite 15415 is one the best known rocks of the Apollo collection and is popularly called the Genesis Rock because the astronauts thought they had a piece of the moon's primordial crust. It was collected on the rim of Apur Crater during the Apollo 15 mission.

Rock 60015 is highly shocked ferroan anorthosite collected near the lunar module during the Apollo 16 mission. Troctolite 76535 is a coarse-grained plutonic rock collected during the Apollo 17 mission.

Co-author Peslier is at Jacobs Technology and NASA's Johnson Space Center. The fourth author of the Nature Geoscience paper, Clive Neal, is a professor of civil and environmental engineering and earth sciences at the University of Notre Dame. The work was supported by NASA.

DITORS: A high-resolution photo of a lunar sample used in this study is available at www.ns.umich.edu/Releases/2013/Feb13/water.html

Jim Erickson | Newswise
Further information:
http://www.umich.edu
http://www.ns.umich.edu/Releases/2013/Feb13/water.html

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>