Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Levels Dropping in Some Major Rivers as Global Climate Changes

23.04.2009
Rivers in some of the world's most populous regions are losing water, according to a new comprehensive study of global stream flow.

The study, led by scientists at the National Center for Atmospheric Research (NCAR), suggests that in many cases the reduced flows are associated with climate change. The process could potentially threaten future supplies of food and water.

The results will be published May 15 in the American Meteorological Society's Journal of Climate. The research was supported by the National Science Foundation, NCAR's sponsor.

The scientists, who examined stream flow from 1948 to 2004, found significant changes in about one-third of the world's largest rivers. Of those, rivers with decreased flow outnumbered those with increased flow by a ratio of about 2.5 to 1.

Several of the rivers channeling less water serve large populations, including the Yellow River in northern China, the Ganges in India, the Niger in West Africa, and the Colorado in the southwestern United States. In contrast, the scientists reported greater stream flow over sparsely populated areas near the Arctic Ocean, where snow and ice are rapidly melting.

"Reduced runoff is increasing the pressure on freshwater resources in much of the world, especially with more demand for water as population increases," says NCAR scientist Aiguo Dai, the lead author. "Freshwater being a vital resource, the downward trends are a great concern."

Many factors can affect river discharge, including dams and the diversion of water for agriculture and industry. The researchers found, however, that the reduced flows in many cases appear to be related to global climate change, which is altering precipitation patterns and increasing the rate of evaporation. The results are consistent with previous research by Dai and others showing widespread drying and increased drought over many land areas.

The study raises wider ecological and climate concerns. Discharge from the world's great rivers results in deposits of dissolved nutrients and minerals into the oceans. The freshwater flow also affects global ocean circulation patterns, which are driven by changes in salinity and temperature and which play a vital role in regulating the world's climate. Although the recent changes in the freshwater discharge are relatively small and may only have impacts around major river mouths, Dai said the freshwater balance in the global oceans needs to be monitored for any long-term changes.

Conflicting studies

Scientists have been uncertain about the impacts of global warming on the world's major rivers. Studies with computer models show that many of the rivers outside the Arctic could lose water because of decreased precipitation in the mid- and lower latitudes and an increase in evaporation caused by higher temperatures. Earlier, less comprehensive analyses of major rivers had indicated, however, that global stream flow was increasing.

Dai and his co-authors analyzed the flows of 925 of the planet's largest rivers, combining actual measurements with computer-based stream flow models to fill in data gaps. The rivers in the study drain water from every major landmass except Antarctica and Greenland and account for 73 percent of the world's total stream flow.

Overall, the study found that, from 1948 to 2004, annual freshwater discharge into the Pacific Ocean fell by about 6 percent, or 526 cubic kilometers--approximately the same volume of water that flows out of the Mississippi River each year. The annual flow into the Indian Ocean dropped by about 3 percent, or 140 cubic kilometers. In contrast, annual river discharge into the Arctic Ocean rose about 10 percent, or 460 cubic kilometers.

In the United States, the Columbia River's flow declined by about 14 percent during the 1948-2004 study period, largely because of reduced precipitation and higher water usage in the West. The Mississippi River, however, has increased by 22 percent over the same period because of greater precipitation across the Midwest since 1948.

The impacts of melting

Some rivers, such as the Brahmaputra in South Asia and the Yangtze in China, have shown stable or increasing flows. But they could lose volume in future decades with the gradual disappearance of the Himalayan glaciers feeding them, the authors warned.

"As climate change inevitably continues in coming decades, we are likely to see greater impacts on many rivers and water resources that society has come to rely on," says NCAR scientist Kevin Trenberth, a co-author of the study.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu
http://www.ucar.edu/news/releases/2009/flow.jsp

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>