Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water and lava, but — curiously — no explosion

10.10.2013
Land-based lava pillars in Iceland may have formed through an unusual reaction typically seen deep under the sea

Rocky pillars dotting Iceland’s Skaelingar valley were projectiles tossed into the fields by warring trolls.


A lava pillar in Iceland's Skaelingar valley. A new study suggests that these pillars were formed in an unusual interaction where lava and water met on land without exploding. Credit: Tracy Gregg

That, at least, is the tale that University at Buffalo geologist Tracy Gregg heard from a tour guide and local hiker when she visited the site on two occasions.

But Gregg and a colleague have a new explanation for the presence of the lava formations — this one also unexpected.

In the Journal of Volcanology and Geothermal Research, she and former UB master’s student Kenneth Christle report that the pillars, hollow and made from basalt, likely formed in a surprising reaction where lava met water without any explosion occurring.

Their findings appeared online Aug. 15 and will be published in a forthcoming print edition of the journal.

“Usually, when lava and water meet in aerial environments, the water instantly flashes to steam,” said Gregg, a UB associate professor of geology. “That’s a volume increase of eight times — boom.”

“Formations like the ones we see in Iceland are common in the ocean under two miles of water, where there’s so much pressure that there’s no explosion,” she said. “They’ve never been described on land before, and it’s important because it tells us that water and lava can come together on land and not explode. This has implications for the way we view volcanic risk.”

Deep-sea basalt pillars form when columns of super-heated water rise between pillows of lava on the ocean floor, cooling the molten rock into hollow, pipe-like minarets. The structures grow taller as lava levels rise, and remain standing even after volcanic eruptions end and lava levels fall again.

Gregg and Christle propose that the same phenomenon sculpted the land-based lava pillars in Iceland.

It happened in the 1780s, when lava from a nearby eruption entered the Skaelingar valley, which Gregg theorizes was covered by a pond or was super-swampy.

She thinks one reason no explosion occurred was because the lava was moving so slowly — centimeters per second — that it was able to react with the water in a “kinder, gentler” manner.

“If you’re driving your car at 5 miles per hour and you hit a stop sign, it’s a lot different than if you hit that same stop sign at 40 miles an hour,” she said. “There’s a lot more energy that will be released.”

The Iceland formations, some over 2 meters tall, display telltale features that hint at how they were created. For example:
They are hollow on the inside.
Their rocky exteriors bear vertical scars — scratches where pieces of floating crust may have rammed into the pillars and scraped the surface as lava levels in the valley declined.

The skin of the towers isn’t smooth, but gnarled with shiny drips of rock. The glassy texture suggests that the lava hardened quickly into rock, at a pace consistent with non-explosive water-lava interactions. Had the lava cooled more slowly in air, it would have formed crystals.

Each of these distinctive characteristics is also prevalent in deep-ocean pillars, said Gregg, who first saw the Icelandic formations in the mid-1990s while hiking in the valley with her husband.

“I knew as soon as I saw them what they were,” she said. “I had, at that time, been on submarine cruises and seen these things deep under the sea, so I was just hysterical, saying, ‘Look at these!’ So I ran around and started taking pictures until the light started running out.”

She didn’t have the chance to return to the site until 2010, when Christle received a student research grant from the Geological Society of America to do field work in Iceland.

The two spent four days studying the pillars in detail, confirming Gregg’s original suspicions.

In the future, scientists could hunt for land-based lava pillars near oceans to learn about the height of ancient seas, or search for such formations on Mars and other planets to determine where water once existed.

Media Contact Information

Charlotte Hsu
Media Relations Manager, Architecture, Economic Development, Sciences, Urban and Regional Planning
Tel: 716-645-4655
chsu22@buffalo.edu
Twitter: @UBScience
Pinterest: UB Science

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>