Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WASP Gives NASA's Planetary Scientists New Observation Platform

Scientists who study Earth, the sun and stars have long used high-altitude scientific balloons to carry their telescopes far into the stratosphere for a better view of their targets.

Not so much for planetary scientists. That's because they needed a highly stable, off-the-shelf-type system that could accurately point their instruments and then track planetary targets as they moved in the solar system.

This photograph shows the Wallops Arc Second Pointer payload suspended from a crane during an earlier test deployment.
Image Credit: NASA

That device now exists.

NASA's Wallops Flight Facility in Wallops Island, Va., has designed a new pointing system — the Wallops Arc Second Pointer (WASP) — that can point balloon-borne scientific instruments at targets with sub arc-second accuracy and stability. A planetary scientist — interested in finding less-expensive platforms for observing Jupiter and other extraterrestrial bodies — now plans to test drive the device later this year.

"Arc-second pointing is unbelievably precise," said David Stuchlik, the WASP project manager. "Some compare it to the ability to find and track an object that is the diameter of a dime from two miles away."

WASP is designed to be a highly flexible, standardized system capable of supporting many science payloads, Stuchlik added. Its development frees scientists, who in the past had to develop their own pointing systems, to instead focus on instrument development. Given the technology's potential, the WASP team has received NASA Science Mission Directorate funding to further enhance the new capability as a standard support system.

Flight Proven

First tested in 2011 and then again in 2012, the most recent test flight occurred from Fort Sumner, N.M., in September 2013. During that flight, a 30-story balloon lifted an engineering test unit of the HyperSpectral Imager for Climate Science (HySICS) to an altitude of nearly 122,000 feet, far above the majority of Earth's atmosphere. From this vantage point, WASP precisely pointed HySICS so that it could measure Earth, the sun and the moon.

Developed by Greg Kopp of the University of Colorado's Laboratory for Atmospheric and Space Physics, the imager collected radiance data for nearly half of its eight-and-a-half hour flight, demonstrating improved techniques for future space-based radiance tests. Kopp now is preparing his imager for another balloon flight this September.

OPIS Inaugural Flight

Also planned for September is the inaugural flight of the Observatory for Planetary Investigations from the Stratosphere (OPIS) — a notable event because so few planetary scientists have in the past employed less-expensive balloon craft to fly their instruments.

"Planetary scientists really haven't been involved in balloon payloads," said OPIS Principal Investigator Terry Hurford. "Planetary targets move with respect to the stars in the background. And because you need to track them to gather measurements, you need a system that can accurately point and then follow a target. These challenges are why planetary scientists haven't gotten into the balloon game."

For other scientific disciplines, the tolerances aren't as tight, he added. The targets are either large, like the sun, or plentiful, like the stars, thereby making it much easier to target an object and then maintain a lock onto that object, Hurford said.

Now that Stuchlik and his team have proven WASP's effectiveness, Hurford wants to show that the system is equally as effective for planetary science when he flies his balloon-borne OPIS high above Earth's surface to study Jupiter and planets beyond the solar system.

He is using Goddard Internal Research and Development program funding to repurpose a telescope mirror originally built to calibrate the Goddard-developed Composite Infrared Spectrometer now flying on NASA's Cassini mission. He also is using NASA support to help upgrade WASP's existing avionics system to assure planetary tracking and expand its ability to follow targets above 25 degrees of elevation.

Like HySICS, OPIS will launch from Fort Sumner. Provided stratospheric winds cooperate, the mission is expected to last up to 24 hours during which Hurford plans to gather time measurements of Jupiter's atmospheric structure. His other objectives during his 24-hour flight are to observe a transit of an extrasolar planet and the rotation of an asteroid.

"Time for planetary observations on ground-based observatories is difficult to obtain," Hurford said. "Moreover, high-altitude balloons above 95 percent of the Earth's atmosphere allow for observations in the ultraviolet- and infrared-wavelength bands, which aren't possible with ground-based telescopes. High-altitude balloons offer us a unique, low-cost platform to carry out our planetary observations. This effort provides us with a unique opportunity to build a capability that we can leverage for future opportunities. WASP gives us a new platform," he said.

Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

nachricht Mapping glaciers
09.10.2015 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>