Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming ocean layers will undermine polar ice sheets

04.07.2011
Warming of the ocean's subsurface layers will melt underwater portions of the Greenland and Antarctic ice sheets faster than previously thought, according to new University of Arizona-led research. Such melting would increase the sea level more than already projected.

The research, based on 19 state-of-the-art climate models, proposes a new mechanism by which global warming will accelerate the melting of the great ice sheets during this century and the next.


This view of the seaward edge of Antarctica’s floating Ross Ice Shelf shows a region where the ice is cracking and may produce an iceberg. Credit: Michael Van Woert, NOAA NESDIS, ORA. National Oceanic and Atmospheric Administration/Department of Commerce.

The subsurface ocean layers surrounding the polar ice sheets will warm substantially as global warming progresses, the scientists found. In addition to being exposed to warming air, underwater portions of the polar ice sheets and glaciers will be bathed in warming seawater.

The subsurface ocean along the Greenland coast could increase as much as 3.6 F (2 C) by 2100.

"To my knowledge, this study is the first to quantify and compare future ocean warming around the Greenland and the Antarctic ice sheets using an ensemble of models," said lead author Jianjun Yin, a UA assistant professor of geosciences.

Most previous research has focused on how increases in atmospheric temperatures would affect the ice sheets, he said.

"Ocean warming is very important compared to atmospheric warming because water has a much larger heat capacity than air," Yin said. "If you put an ice cube in a warm room, it will melt in several hours. But if you put an ice cube in a cup of warm water, it will disappear in just minutes."

Given a mid-level increase in greenhouse gases, the researchers found the ocean layer about 650 to 1,650 feet (200 to 500 meters) below the surface would warm, on average, about 1.8 F (1 C) by 2100.

Along the Greenland coast, that layer would warm twice as much, but along Antarctica would warm less, only 0.9 F (0.5 C).

"No one has noticed this discrepancy before – that the subsurface oceans surrounding Greenland and Antarctica warm very differently," Yin said.

Part of the warming in the North comes from the Gulf Stream carrying warm subtropical waters north. By contrast, the Antarctic Circumpolar Current blocks some of the subtropical warmth from entering the Antarctic's coastal waters.

Even so, the Antarctic ice sheet will be bathed in warming waters, the team writes.

Co-author Jonathan T. Overpeck said, "This does mean that both Greenland and Antarctica are probably going melt faster than the scientific community previously thought."

Overpeck, a UA professor of geosciences and co-director of UA's Institute of the Environment, said, "This paper adds to the evidence that we could have sea level rise by the end of this century of around 1 meter and a good deal more in succeeding centuries."

The paper by Yin, Overpeck and their colleagues, "Different Magnitudes of Projected Subsurface Ocean Warming Around Greenland and Antarctica," is scheduled for online publication in Nature Geoscience on July 3.

Their co-authors are UA assistant professor of geosciences Joellen L. Russell; Stephen M. Griffies and Ronald J. Stouffer of the National Oceanographic Atmospheric Administration's Geophysical Fluid Dynamics Laboratory in Princeton, N.J.; and Aixue Hu of the National Center for Atmospheric Research in Boulder, Colo.

Other researchers have recently measured surprisingly high subsurface ocean temperatures along coastal glaciers in Greenland, Yin said. In addition, scientists have reported the Greenland and Antarctica glaciers that empty into the sea are moving faster.

Yin decided to figure out how much those subsurface currents would warm during this century and the next.

Glaciers are rivers of ice. Like rivers of liquid water, glaciers move downhill. Some glaciers melt before reaching the ocean, and others, called tidewater glaciers, flow all the way to the sea.

The face of a tidewater glacier visible from a boat is only part of it – much of the glacier's leading edge is underwater in a deep fjord.

Yin's research suggests Greenland's glaciers are being exposed to increasingly warm subsurface water that will melt the underwater portion of the glaciers. As a result, the tops of the glaciers will no longer have support and will topple into the sea, creating icebergs. In addition, as the undersides of the glaciers melt, that meltwater will speed the glaciers' movement into the sea by lubricating their undersides.

Ultimately, those glaciers will melt back so far they no longer reach the sea, the team writes.

In contrast, much more of the Antarctic ice sheet is based on land that is already below sea level. Therefore as the Antarctic ice sheet melts back, the leading edge of the ice sheet will continue to be underwater. As such warming and melting continues into the 22nd century and beyond, parts of the Antarctic ice sheet may disintegrate, the team writes.

Yin's next step is examining climate models that can zero in even further on the regional effects of climate warming on the subsurface ocean and the ice sheets.

Researcher contact:

Jianjun Yin
520-626-7453, yin@email.arizona.edu
Languages spoken -- English, Mandarin
Jonathan Overpeck
520-907-6480, jto@email.arizona.edu
Joellen Russell
520-626-2194
jrussell@email.arizona.edu

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>