Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second Warmest January in Past 35

08.02.2013
Global Temperature Report: January 2013

Second warmest January in past 35

Global climate trend since Nov. 16, 1978: +0.14 C per decade

January temperatures (preliminary)

Global composite temp.: +0.51 C (about 0.92 degrees Fahrenheit) above 30-year average for January.

Northern Hemisphere: +0.55 C (about 0.99 degrees Fahrenheit) above 30-year average for January.

Southern Hemisphere: +0.46 C (about 0.83 degrees Fahrenheit) above 30-year average for January.

Tropics: +0.38 C (about 0.68 degrees Fahrenheit) above 30-year average for January.

December temperatures (revised):

Global Composite: +0.21 C above 30-year average

Northern Hemisphere: +0.15 C above 30-year average

Southern Hemisphere: +0.26 C above 30-year average

Tropics: +0.14 C above 30-year average

(All temperature anomalies are based on a 30-year average (1981-2010) for the month reported.)

Notes on data released Feb. 6, 2013:

Globally, January 2013 was the second warmest January among the past 35, with an annual global average temperature that was 0.51 C (about 0.92 degrees Fahrenheit) warmer than the 30-year baseline average, according to Dr. John Christy, a professor of atmospheric science and director of the Earth System Science Center at The University of Alabama in Huntsville. January 2010 was the warmest January, while January 1998 is now pushed to third warmest.

Compared to seasonal norms, over the past month the coldest area on the globe was east central Russia near the town of Nyagan, where temperatures for the month averaged as much as 2.51 C (about 4.5 degrees Fahrenheit) cooler than seasonal norms. Compared to seasonal norms, the “warmest” area on the globe in January was the Norwegian arctic archipelago of Svalbard, which is north of Norway and east of Greenland. Temperatures there averaged 4.1 C (about 7.4 degrees Fahrenheit) warmer than seasonal norms for January.

Archived color maps of local temperature anomalies are available on-line at:

http://nsstc.uah.edu/climate/

The processed temperature data is available on-line at:

vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc.lt

As part of an ongoing joint project between UAHuntsville, NOAA and NASA, John Christy, a professor of atmospheric science and director of the Earth System Science Center (ESSC) at The University of Alabama in Huntsville, and Dr. Roy Spencer, an ESSC principal scientist, use data gathered by advanced microwave sounding units on NOAA and NASA satellites to get accurate temperature readings for almost all regions of the Earth. This includes remote desert, ocean and rain forest areas where reliable climate data are not otherwise available.

The satellite-based instruments measure the temperature of the atmosphere from the surface up to an altitude of about eight kilometers above sea level. Once the monthly temperature data is collected and processed, it is placed in a "public" computer file for immediate access by atmospheric scientists in the U.S. and abroad.

Neither Christy nor Spencer receives any research support or funding from oil, coal or industrial companies or organizations, or from any private or special interest groups. All of their climate research funding comes from federal and state grants or contracts.

For Additional Information:

Dr. John Christy, (256) 961-7763
john.christy@nsstc.uah.edu
Dr. Roy Spencer, (256) 961-7960
roy.spencer@nsstc.uah.edu

Dr. Roy Spencer | Newswise
Further information:
http://www.nsstc.uah.edu

More articles from Earth Sciences:

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

nachricht Newly discovered salty subglacial lakes could help search for life in solar system
12.04.2018 | University of Texas at Austin

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>