Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second Warmest January in Past 35

08.02.2013
Global Temperature Report: January 2013

Second warmest January in past 35

Global climate trend since Nov. 16, 1978: +0.14 C per decade

January temperatures (preliminary)

Global composite temp.: +0.51 C (about 0.92 degrees Fahrenheit) above 30-year average for January.

Northern Hemisphere: +0.55 C (about 0.99 degrees Fahrenheit) above 30-year average for January.

Southern Hemisphere: +0.46 C (about 0.83 degrees Fahrenheit) above 30-year average for January.

Tropics: +0.38 C (about 0.68 degrees Fahrenheit) above 30-year average for January.

December temperatures (revised):

Global Composite: +0.21 C above 30-year average

Northern Hemisphere: +0.15 C above 30-year average

Southern Hemisphere: +0.26 C above 30-year average

Tropics: +0.14 C above 30-year average

(All temperature anomalies are based on a 30-year average (1981-2010) for the month reported.)

Notes on data released Feb. 6, 2013:

Globally, January 2013 was the second warmest January among the past 35, with an annual global average temperature that was 0.51 C (about 0.92 degrees Fahrenheit) warmer than the 30-year baseline average, according to Dr. John Christy, a professor of atmospheric science and director of the Earth System Science Center at The University of Alabama in Huntsville. January 2010 was the warmest January, while January 1998 is now pushed to third warmest.

Compared to seasonal norms, over the past month the coldest area on the globe was east central Russia near the town of Nyagan, where temperatures for the month averaged as much as 2.51 C (about 4.5 degrees Fahrenheit) cooler than seasonal norms. Compared to seasonal norms, the “warmest” area on the globe in January was the Norwegian arctic archipelago of Svalbard, which is north of Norway and east of Greenland. Temperatures there averaged 4.1 C (about 7.4 degrees Fahrenheit) warmer than seasonal norms for January.

Archived color maps of local temperature anomalies are available on-line at:

http://nsstc.uah.edu/climate/

The processed temperature data is available on-line at:

vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc.lt

As part of an ongoing joint project between UAHuntsville, NOAA and NASA, John Christy, a professor of atmospheric science and director of the Earth System Science Center (ESSC) at The University of Alabama in Huntsville, and Dr. Roy Spencer, an ESSC principal scientist, use data gathered by advanced microwave sounding units on NOAA and NASA satellites to get accurate temperature readings for almost all regions of the Earth. This includes remote desert, ocean and rain forest areas where reliable climate data are not otherwise available.

The satellite-based instruments measure the temperature of the atmosphere from the surface up to an altitude of about eight kilometers above sea level. Once the monthly temperature data is collected and processed, it is placed in a "public" computer file for immediate access by atmospheric scientists in the U.S. and abroad.

Neither Christy nor Spencer receives any research support or funding from oil, coal or industrial companies or organizations, or from any private or special interest groups. All of their climate research funding comes from federal and state grants or contracts.

For Additional Information:

Dr. John Christy, (256) 961-7763
john.christy@nsstc.uah.edu
Dr. Roy Spencer, (256) 961-7960
roy.spencer@nsstc.uah.edu

Dr. Roy Spencer | Newswise
Further information:
http://www.nsstc.uah.edu

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>