Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer springs causing loss of snow cover throughout the Rocky Mountains

14.05.2013
Warmer spring temperatures since 1980 are causing an estimated 20 percent loss of snow cover across the Rocky Mountains of western North America, according to a new study.

The research builds upon a previous snowpack investigation by the U.S. Geological Survey (USGS) that showed that, until the 1980s, the northern Rocky Mountains experienced large snowpacks when the central and southern Rockies experienced meager ones, and vice versa.

Yet, since the 1980s, there have been simultaneous snowpack declines along the entire length of the Rocky Mountains, and unusually severe declines in the north, the earlier investigation showed.

Now, the new study, also by USGS scientists, has teased apart and quantified the different influences of winter temperature, spring temperature, and precipitation on historic snowpack variations and trends in the region. To distinguish those varying influences, the researchers implemented a regional snow model that uses inputs of monthly temperature and precipitation data from 1895 to 2011.

“Each year we looked at temperature and precipitation variations and the amount of water contained within the snowpack as of April,” said Greg Pederson of the USGS Northern Rocky Mountain Science Center in Bozeman, Mont., who is the lead author of the study. “Snow deficits were consistent throughout the Rockies due to the lack of precipitation during the cool seasons during the 1930s – coinciding with the Dust Bowl era. From 1980 on, warmer spring temperatures melted snowpack throughout the Rockies early, regardless of winter precipitation. The model in turn shows temperature as the major driving factor in snowpack declines over the past thirty years.”

Pederson and his colleagues present their new findings in an article in Geophysical Research Letters, a journal of the American Geophysical Union.

Runoff from Rocky Mountain winter snowpack accounts for 60 to 80 percent of the annual water supply for more than 70 million people living in the western U.S., and is influenced by the snowpack’s water content, known as snow water equivalent, and the timing of snowmelt.

The timing of snowmelt affects not only when water is available for crop irrigation and energy production from hydroelectric dams, but also the risk of regional floods and wildfires. Earlier and faster snowmelt could have repercussions for water supply, risk management, and ecosystem health in western watersheds.

Regional snowpack accumulation is highly sensitive to variations in both temperature and precipitation over time. Patterns and sources of these variations are difficult to discern due to complex mountain topography, the different influence of Pacific Ocean climate, like La Niña and El Niño, on winter precipitation in the northern versus southern and central Rockies, and the brevity and patchiness of detailed snow records.

In the new study, the regional snow model used by Pederson and his USGS colleagues Julio Betancourt, and Greg McCabe allows estimation of snow water and cover variability at different latitudes and elevations during the last century regardless of the absence of direct and long-term observations everywhere. Recent snowpack variations also were evaluated in the context of snowpack evidence from tree-rings, allowing the scientists to compare recent observations to measurements from the past 800 years.

McCabe explains that “recent springtime warming also reduced the extent of snow cover at low to middle elevations where temperature has had the greatest impact.”

“Both natural variability in temperature and anthropogenic warming have contributed to the recent snowpack decline, though disentangling their influences exactly remains elusive,” Betancourt said. “Regardless of the ultimate causes, continuation of present snowpack trends in the Rocky Mountains will pose difficult challenges for watershed management and conventional water planning in the American West.”

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50424/abstract

Or, you may order a copy of the paper by emailing your request to Peter Weiss at pweiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:

“Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.”

Authors:
Gregory T. Pederson U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, USA, and Earth Sciences Department, Montana State University, Bozeman, Montana, USA; Julio L. Betancourt U.S. Geological Survey, National Research Program, Tucson, Arizona, USA; Gregory J. McCabe U.S. Geological Survey, National Research Program, Water Resources Division, Denver Federal Center, Denver, Colorado, USA.
Contact information for the authors:

Greg Pederson, +1 (406) 994-7390, gpederson@usgs.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-19.shtml

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>