Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer planet temperatures could cause longer-lasting weather patterns

19.02.2010
MU researchers are studying whether high levels of carbon dioxide and higher global temperatures could lead to more frequent atmospheric blocking

Whether it's never-ending heat waves or winter storms, atmospheric blocking can have a significant impact on local agriculture, business and the environment. Although these stagnant weather patterns are often difficult to predict, University of Missouri researchers are now studying whether increasing planet temperatures and carbon dioxide levels could lead to atmospheric blocking and when this blocking might occur, leading to more accurate forecasts.

"In this research, we're trying to see if increased carbon dioxide in the atmosphere and the resulting atmospheric warming will affect the onset and duration of future blocking events," said Tony Lupo, professor and chair of the atmospheric science department at the MU College of Agriculture, Food and Natural Resources. "We're hoping that the research will add cues that could help fellow forecasters better predict blocking and warn people in cases of long-lasting, severe weather."

Atmospheric blocking occurs between 20-40 times each year and usually lasts between 8-11 days, Lupo said. Although they are one of the rarest weather events, blocking can trigger dangerous conditions, such as a 2003 European heat wave that caused 40,000 deaths. Blocking usually results when a powerful, high-pressure area gets stuck in one place and, because they cover a large area, fronts behind them are blocked. Lupo believes that heat sources, such as radiation, condensation, and surface heating and cooling, have a significant role in a blocking's onset and duration. Therefore, planetary warming could increase the frequency and impact of atmospheric blocking.

"It is anticipated that in a warmer world, blocking events will be more numerous, weaker and longer-lived," Lupo said. "This could result in an environment with more storms. We also anticipate the variability of weather patterns will change dramatically over some parts of the world, such as North America, Europe and Asia, but not in others."

Lupo, in collaboration with Russian researchers from the Russian Academy of Sciences, will simulate atmospheric blocking using computer models that mirror known blocking events, then introduce differing carbon dioxide environments into the models to study how the dynamics of blocking events are changed by increased atmospheric temperatures. The project is funded by the US Civilian Research and Development Foundation – one of only 16 grants awarded by the group this year. He is partnering with Russian meteorologists whose research is being supported by the Russian Federation for Basic Research.

Lupo's research has been published in several journals, including the Journal of Climate and Climate Dynamics. He anticipates that final results of the current study will be available in 2011.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>